/*******************************************************************************/ /* Copyright (C) 2007-2008 Jonathan Moore Liles */ /* */ /* This program is free software; you can redistribute it and/or modify it */ /* under the terms of the GNU General Public License as published by the */ /* Free Software Foundation; either version 2 of the License, or (at your */ /* option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, but WITHOUT */ /* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or */ /* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for */ /* more details. */ /* */ /* You should have received a copy of the GNU General Public License along */ /* with This program; see the file COPYING. If not,write to the Free Software */ /* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /*******************************************************************************/ /* This is a generic double-buffering, optimizing canvas interface to grids (patterns and phrases). It draws only what is necessary to keep the display up-to-date. Actual drawing functions are in draw.C */ #include "canvas.H" #include "pattern.H" #include "gui/draw.H" #include "common.h" #include "non.H" cell_t ** Canvas::_alloc_array ( void ) { cell_t **a; int one = sizeof( typeof( a ) ) * m.vp->w; int two = sizeof( typeof( a[0] ) ) * (m.vp->h * m.vp->w); a = (cell_t **) malloc( one + two ); m.size = one + two; cell_t *c = (cell_t *) (((unsigned char *)a) + one); for ( uint x = m.vp->w; x-- ; ) { a[x] = c; c += m.vp->h; for ( uint y = m.vp->h; y-- ; ) { a[ x ][ y ].flags = 0; a[ x ][ y ].state = -1; a[ x ][ y ].shape = SQUARE; a[ x ][ y ].color = 0; } } m.w = m.vp->w; m.h = m.vp->h; return a; } Canvas::Canvas ( ) { m.origin_x = m.origin_y = m.height = m.width = m.div_w = m.div_h = m.playhead = m.margin_top = m.margin_left = m.playhead = m.w = m.h = m.p1 = m.p2 = m.p3 = m.p4 = 0; m.margin_top = ruler_height; m.draw = false; m.ruler_drawn = false; m.mapping_drawn = false; m.grid_drawn = false; m.current = m.previous = NULL; m.row_compact = true; m.maxh = 128; m.vp = NULL; } void Canvas::handle_event_change ( void ) { /* mark the song as dirty and pass the signal on */ song.dirty( true ); signal_draw(); } /** change grid to /g/, returns TRUE if new grid size differs from old */ void Canvas::grid ( Grid *g ) { m.grid = g; if ( ! g ) return; m.vp = &g->viewport; char *s = m.vp->dump(); DEBUG( "viewport: %s", s ); free( s ); m.ruler_drawn = false; resize_grid(); changed_mapping(); m.shape = m.grid->draw_shape(); /* connect signals */ /* FIXME: what happens when we do this twice? */ g->signal_events_change.connect( mem_fun( this, &Canvas::handle_event_change ) ); g->signal_settings_change.connect( signal_settings_change.make_slot() ); signal_draw(); signal_settings_change(); } /** keep row compaction tables up-to-date */ void Canvas::_update_row_mapping ( void ) { /* reset */ for ( int i = 128; i-- ; ) m.rtn[i] = m.ntr[i] = -1; DEBUG( "updating row mapping" ); /* rebuild */ int r = 0; for ( int n = 0; n < 128; ++n ) { if ( m.grid->row_name( n ) ) { m.rtn[r] = n; m.ntr[n] = r; ++r; } } if ( m.row_compact && r ) m.maxh = r; else m.maxh = 128; m.vp->h = min( m.vp->h, m.maxh ); } /** change grid mapping */ void Canvas::changed_mapping ( void ) { _update_row_mapping(); m.mapping_drawn = false; m.vp->y = (m.maxh / 2) - (m.vp->h / 2); resize(); int old_margin = m.margin_left; m.margin_left = 0; m.draw = false; m.grid->draw_row_names( this ); if ( m.margin_left != old_margin ) { signal_resize(); signal_draw(); } else signal_draw(); } Grid * Canvas::grid ( void ) { return m.grid; } /** recalculate node sizes based on physical dimensions */ void Canvas::resize ( void ) { if ( ! m.vp ) return; m.div_w = (m.width - m.margin_left) / m.vp->w; m.div_h = (m.height - m.margin_top) / m.vp->h; m.border_w = min( m.div_w, m.div_h ) / 8; m.mapping_drawn = m.ruler_drawn = false; } /** reallocate buffers to match grid dimensions */ void Canvas::resize_grid ( void ) { // _update_row_mapping(); resize(); if ( m.vp ) { if ( m.vp->w != m.w || m.vp->h != m.h || m.div_w != m.old_div_w || m.div_h != m.old_div_h ) { if ( m.grid_drawn ) signal_resize(); m.old_div_w = m.div_w; m.old_div_h = m.div_h; } else return; } DEBUG( "resizing grid %dx%d", m.vp->w, m.vp->h ); if ( m.previous ) { free( m.previous ); free( m.current ); } m.current = _alloc_array(); m.previous = _alloc_array(); m.grid_drawn = false; } /** inform the canvas with new phsyical dimensions */ void Canvas::resize ( int x, int y, int w, int h ) { m.origin_x = x; m.origin_y = y; m.width = w; m.height = h; resize(); } /***********/ /* Drawing */ /***********/ /** copy last buffer into current */ void Canvas::copy ( void ) { for ( uint y = m.vp->h; y-- ; ) for ( uint x = m.vp->w; x-- ; ) m.current[ x ][ y ] = m.previous[ x ][ y ]; } /** reset last buffer */ void Canvas::_reset ( void ) { cell_t empty = {0,0,0,0}; for ( uint y = m.vp->h; y-- ; ) for ( uint x = m.vp->w; x-- ; ) m.current[ x ][ y ] = empty; } /** prepare current buffer for drawing (draw "background") */ void Canvas::clear ( void ) { uint rule = m.grid->ppqn(); uint lx = m.grid->ts_to_x( m.grid->length() ); for ( uint y = m.vp->h; y--; ) for ( uint x = m.vp->w; x--; ) { m.current[ x ][ y ].color = 0; m.current[ x ][ y ].shape = m.shape; m.current[ x ][ y ].state = EMPTY; m.current[ x ][ y ].flags = 0; } for ( int x = m.vp->w - rule; x >= 0; x -= rule ) for ( uint y = m.vp->h; y-- ; ) m.current[ x ][ y ].state = LINE; int sx = (int)(lx - m.vp->x) >= 0 ? lx - m.vp->x : 0; for ( int x = sx; x < m.vp->w; ++x ) for ( int y = m.vp->h; y-- ; ) m.current[ x ][ y ].state = PARTIAL; } /** is /x/ within the viewport? */ bool Canvas::viewable_x ( int x ) { return x >= m.vp->x && x < m.vp->x + m.vp->w; } /** flush delta of last and current buffers to screen, then flip them */ void Canvas::flip ( void ) { /* FIXME: should this not go in clear()? */ if ( m.p1 != m.p2 ) { if ( viewable_x( m.p1 ) ) draw_line( m.p1 - m.vp->x, F_P1 ); if ( viewable_x( m.p2 ) ) draw_line( m.p2 - m.vp->x, F_P2 ); } if ( viewable_x( m.playhead ) ) draw_line( m.playhead - m.vp->x, F_PLAYHEAD ); for ( uint y = m.vp->h; y--; ) for ( uint x = m.vp->w; x--; ) { cell_t *c = &m.current[ x ][ y ]; cell_t *p = &m.previous[ x ][ y ]; /* draw selection rect */ if ( m.p3 != m.p4 ) if ( y + m.vp->y >= m.p3 && x + m.vp->x >= m.p1 && y + m.vp->y <= m.p4 && x + m.vp->x < m.p2 ) c->flags |= F_SELECTION; if ( *c != *p ) gui_draw_shape( m.origin_x + m.margin_left + x * m.div_w, m.origin_y + m.margin_top + y * m.div_h, m.div_w, m.div_h, m.border_w, c->shape, c->state, c->flags, c->color ); } cell_t **tmp = m.previous; m.previous = m.current; m.current = tmp; } /** redraw the ruler at the top of the canvas */ void Canvas::redraw_ruler ( void ) { m.margin_top = gui_draw_ruler( m.origin_x + m.margin_left, m.origin_y, m.vp->w, m.div_w, m.grid->division(), m.vp->x, m.p1 - m.vp->x, m.p2 - m.vp->x ); m.ruler_drawn = true; } /** callback called by Grid::draw_row_names() to draw an individual row name */ void Canvas::draw_row_name ( int y, const char *name, int color ) { bool draw = m.draw; bool clear = false; y = ntr( y ); if ( ! m.row_compact && ! name ) clear = true; y -= m.vp->y; int bx = m.origin_x; int by = m.origin_y + m.margin_top + y * m.div_h; int bw = min( m.margin_left, m.width / 8 ); int bh = m.div_h; if ( y < 0 || y >= m.vp->h ) draw = false; if ( clear && draw ) gui_clear_area( bx, by, bw, bh ); else m.margin_left = max( m.margin_left, gui_draw_string( bx, by, bw, bh, color, name, draw ) ); } /** redraw row names */ void Canvas::redraw_mapping ( void ) { m.margin_left = 0; m.draw = false; m.grid->draw_row_names( this ); resize(); m.draw = true; m.grid->draw_row_names( this ); m.mapping_drawn = true; } void Canvas::draw_mapping ( void ) { if ( ! m.mapping_drawn ) redraw_mapping(); } void Canvas::draw_ruler ( void ) { if ( ! m.ruler_drawn ) redraw_ruler(); } /** "draw" a shape in the backbuffer */ void Canvas::draw_shape ( int x, int y, int shape, int state, int color, bool selected ) { y = ntr( y ); if ( y < 0 ) return; // adjust for viewport. x -= m.vp->x; y -= m.vp->y; if ( x < 0 || y < 0 || x >= m.vp->w || y >= m.vp->h ) return; m.current[ x ][ y ].shape = shape; m.current[ x ][ y ].color = color; m.current[ x ][ y ].state = (uint)m.vp->x + x > m.grid->ts_to_x( m.grid->length() ) ? PARTIAL : state; if ( selected ) m.current[ x ][ y ].state = SELECTED; m.current[ x ][ y ].flags = 0; } /** callback used by Grid::draw() */ void Canvas::draw_dash ( int x, int y, int l, int shape, int color, bool selected ) { draw_shape( x, y, shape, FULL, color, selected ); for ( int i = x + l - 1; i > x; i-- ) { draw_shape( i, y, shape, CONTINUED, 0, selected ); } } /** draw a vertical line with flags */ void Canvas::draw_line ( int x, int flags ) { for ( uint y = m.vp->h; y-- ; ) m.current[ x ][ y ].flags |= flags; } /** draw only the playhead--without reexamining the grid */ int Canvas::draw_playhead ( void ) { int x = m.grid->ts_to_x( m.grid->index() ); if ( m.playhead == x ) return 0; m.playhead = x; if ( m.playhead < m.vp->x || m.playhead >= m.vp->x + m.vp->w ) { if ( config.follow_playhead ) { m.vp->x = m.playhead / m.vp->w * m.vp->w; m.ruler_drawn = false; signal_draw(); return 0; } } copy(); for ( uint x = m.vp->w; x-- ; ) for ( uint y = m.vp->h; y-- ; ) m.current[ x ][ y ].flags &= ~ (F_PLAYHEAD | F_P1 | F_P2 ); flip(); return 1; } /** draw ONLY those nodes necessary to bring the canvas up-to-date with the grid */ void Canvas::draw ( void ) { DEBUG( "drawing canvas" ); draw_mapping(); draw_ruler(); m.grid_drawn = true; m.grid->draw( this, m.vp->x, m.vp->y, m.vp->w, m.vp->h ); } /** redraw every node on the canvas from the buffer (without * necessarily reexamining the grid) */ void Canvas::redraw ( void ) { DEBUG( "redrawing canvas" ); if ( ! m.grid_drawn ) draw(); m.ruler_drawn = false; m.mapping_drawn = false; draw_mapping(); draw_ruler(); for ( int y = m.vp->h; y--; ) for ( int x = m.vp->w; x--; ) { cell_t c = m.previous[ x ][ y ]; if ( c.shape > HEXAGON ) return; if ( m.vp->x + x == m.playhead ) c.flags |= F_PLAYHEAD; gui_draw_shape( m.origin_x + m.margin_left + x * m.div_w, m.origin_y + m.margin_top + y * m.div_h, m.div_w, m.div_h, m.border_w, c.shape, c.state, c.flags, c.color ); } } /** convert pixel coords into grid coords. returns true if valid */ bool Canvas::grid_pos ( int *x, int *y ) const { *y = (*y - m.margin_top - m.origin_y) / m.div_h; *x = (*x - m.margin_left - m.origin_x) / m.div_w; if ( *x < 0 || *y < 0 || *x >= m.vp->w || *y >= m.vp->h ) return false; /* adjust for viewport */ *x += m.vp->x; *y += m.vp->y; /* adjust for row-compaction */ *y = rtn( *y ); return true; } /******************/ /* Input handlers */ /******************/ /* These methods translate viewport pixel coords to absolute grid coords and pass on to the grid. */ /** if coords correspond to a row name entry, return the (absolute) note number, otherwise return -1 */ int Canvas::is_row_name ( int x, int y ) { if ( x - m.origin_x >= m.margin_left ) return -1; x = m.margin_left; grid_pos( &x, &y ); return m.grid->y_to_note( y ); } void Canvas::start_cursor ( int x, int y ) { if ( ! grid_pos( &x, &y ) ) return; m.ruler_drawn = false; m.p1 = x; m.p3 = ntr( y ); _lr(); signal_draw(); } void Canvas::end_cursor ( int x, int y ) { if ( ! grid_pos( &x, &y ) ) return; m.ruler_drawn = false; m.p2 = x; m.p4 = ntr( y ); _lr(); signal_draw(); } void Canvas::set ( int x, int y ) { if ( y - m.origin_y < m.margin_top ) /* looks like a click on the ruler */ { if ( x - m.margin_left - m.origin_x >= 0 ) { m.p1 = m.vp->x + ((x - m.margin_left - m.origin_x) / m.div_w); m.ruler_drawn = false; m.p3 = m.p4 = 0; } _lr(); signal_draw(); return; } if ( ! grid_pos( &x, &y ) ) return; m.grid->put( x, y, 0 ); } void Canvas::unset ( int x, int y ) { if ( y - m.origin_y < m.margin_top ) /* looks like a click on the ruler */ { if ( x - m.margin_left - m.origin_x >= 0 ) { m.p2 = m.vp->x + ((x - m.margin_left - m.origin_x) / m.div_w); m.ruler_drawn = false; m.p3 = m.p4 = 0; } _lr(); signal_draw(); return; } if ( ! grid_pos( &x, &y ) ) return; m.grid->del( x, y ); } void Canvas::adj_color ( int x, int y, int n ) { if ( ! grid_pos( &x, &y ) ) return; m.grid->adj_velocity( x, y, n ); } void Canvas::adj_length ( int x, int y, int n ) { if ( ! grid_pos( &x, &y ) ) return; m.grid->adj_duration( x, y, n ); } void Canvas::select ( int x, int y ) { if ( ! grid_pos( &x, &y ) ) return; m.grid->toggle_select( x, y ); } void Canvas::move_selected ( int dir, int n ) { switch ( dir ) { case RIGHT: m.grid->move_selected( n ); break; case LEFT: m.grid->move_selected( 0 - n ); break; case UP: case DOWN: { /* row-compaction makes this a little complicated */ event_list *el = m.grid->events(); /* FIXME: don't allow movement beyond the edges! */ /* int hi, lo; */ /* m.grid->selected_hi_lo_note( &hi, &lo ); */ /* hi = ntr( hi ) > 0 ? ntr( hi ) : */ /* if ( m.grid->y_to_note( ntr( hi ) ) ) */ if ( dir == UP ) for ( int y = 0; y <= m.maxh; ++y ) el->rewrite_selected( m.grid->y_to_note( rtn( y ) ), m.grid->y_to_note( rtn( y - n ) ) ); else for ( int y = m.maxh; y >= 0; --y ) el->rewrite_selected( m.grid->y_to_note( rtn( y ) ), m.grid->y_to_note( rtn( y + n ) ) ); m.grid->events( el ); delete el; break; } } } void Canvas::randomize_row ( int y ) { int x = m.margin_left; if ( ! grid_pos( &x, &y ) ) return; ((pattern*)m.grid)->randomize_row( y, song.random.feel, song.random.probability ); } void Canvas::_lr ( void ) { int l, r; if ( m.p2 > m.p1 ) { l = m.p1; r = m.p2; } else { l = m.p2; r = m.p1; } m.p1 = l; m.p2 = r; } void Canvas::select_range ( void ) { if ( m.p3 == m.p4 ) m.grid->select( m.p1, m.p2 ); else m.grid->select( m.p1, m.p2, rtn( m.p3 ), rtn( m.p4 ) ); } void Canvas::invert_selection ( void ) { m.grid->invert_selection(); } void Canvas::crop ( void ) { if ( m.p3 == m.p4 ) m.grid->crop( m.p1, m.p2 ); else m.grid->crop( m.p1, m.p2, rtn( m.p3 ), rtn( m.p4 ) ); m.vp->x = 0; m.p2 = m.p2 - m.p1; m.p1 = 0; m.ruler_drawn = false; } void Canvas::delete_time ( void ) { m.grid->delete_time( m.p1, m.p2 ); } void Canvas::insert_time ( void ) { m.grid->insert_time( m.p1, m.p2 ); } /** paste range as new grid */ void Canvas::duplicate_range ( void ) { Grid *g = m.grid->clone(); g->crop( m.p1, m.p2 ); g->viewport.x = 0; } void Canvas::row_compact ( int n ) { switch ( n ) { case OFF: m.row_compact = false; m.maxh = 128; break; case ON: m.row_compact = true; m.vp->y = 0; _update_row_mapping(); break; case TOGGLE: row_compact( m.row_compact ? OFF : ON ); break; } _reset(); m.mapping_drawn = false; } void Canvas::pan ( int dir, int n ) { switch ( dir ) { case LEFT: case RIGHT: case TO_PLAYHEAD: case TO_NEXT_NOTE: case TO_PREV_NOTE: /* handle horizontal movement specially */ n *= m.grid->division(); m.ruler_drawn = false; break; default: n *= 5; m.mapping_drawn = false; break; } switch ( dir ) { case LEFT: m.vp->x = max( m.vp->x - n, 0 ); break; case RIGHT: m.vp->x += n; break; case TO_PLAYHEAD: m.vp->x = m.playhead - (m.playhead % m.grid->division()); break; case UP: m.vp->y = max( m.vp->y - n, 0 ); break; case DOWN: m.vp->y = min( m.vp->y + n, m.maxh - m.vp->h ); break; case TO_NEXT_NOTE: { int x = m.grid->next_note_x( m.vp->x ); m.vp->x = x - (x % m.grid->division() ); break; } case TO_PREV_NOTE: { int x = m.grid->prev_note_x( m.vp->x ); m.vp->x = x - (x % m.grid->division() ); break; } } signal_draw(); } /** adjust horizontal zoom (* n) */ void Canvas::h_zoom ( float n ) { m.vp->w = max( 32, min( (int)(m.vp->w * n), 256 ) ); resize_grid(); } void Canvas::v_zoom_fit ( void ) { if ( ! m.grid ) return; changed_mapping(); m.vp->h = m.maxh; m.vp->y = 0; resize_grid(); } /** adjust vertical zoom (* n) */ void Canvas::v_zoom ( float n ) { m.vp->h = max( 1, min( (int)(m.vp->h * n), m.maxh ) ); resize_grid(); } void Canvas::notes ( char *s ) { m.grid->notes( s ); } char * Canvas::notes ( void ) { return m.grid->notes(); }