Start implementing the ratchet

logging_enabled
Mark Haines 2015-02-25 17:33:23 +00:00
parent a4e5bf9772
commit 186df91246
2 changed files with 427 additions and 0 deletions

View File

@ -0,0 +1,96 @@
#include "axololt/crypto.hh"
#include "axololt/list.hh"
namespace axolotl {
typedef std::uint8_t SharedKey[32];
struct ChainKey {
std::uint32_t index;
SharedKey key;
};
struct MessageKey {
std::uint32_t index;
Aes256Key cipher_key;
SharedKey mac_key;
Aes256Iv iv;
};
struct SenderChain {
Curve25519KeyPair ratchet_key;
ChainKey chain_key;
};
struct ReceiverChain {
Curve25519PublicKey ratchet_key;
ChainKey chain_key;
};
struct SkippedMessageKey {
Curve25519PublicKey ratchet_key;
MessageKey message_key;
};
enum struct ErrorCode {
SUCCESS = 0, /*!< There wasn't an error */
NOT_ENOUGH_RANDOM = 1, /*!< Not enough entropy was supplied */
OUTPUT_BUFFER_TOO_SMALL = 2, /*!< Supplied output buffer is too small */
BAD_MESSAGE_VERSION = 3, /*!< The message version is unsupported */
BAD_MESSAGE_FORMAT = 4, /*!< The message couldn't be decoded */
BAD_MESSAGE_MAC = 5, /*!< The message couldn't be decrypted */
};
static std::size_t const MAX_RECEIVER_CHAINS = 5;
static std::size_t const MAX_SKIPPED_MESSAGE_KEYS = 40;
struct KdfInfo {
std::uint8_t const * ratchet_info;
std::size_t ratchet_info_length;
std::uint8_t const * message_info;
std::size_t message_info_length;
};
struct Session {
/** A pair of string to feed into the KDF identifing the application */
KdfInfo kdf_info;
/** The last error that happened encypting or decrypting a message */
ErrorCode last_error;
SharedKey root_key;
List<SenderChain, 1> sender_chain;
List<ReceiverChain, MAX_RECEIVER_CHAINS> reciever_chains;
List<SkippedMessageKey, MAX_SKIPPED_MESSAGE_KEYS> skipped_message_keys;
std::size_t encrypt_max_output_length(
std::size_t plaintext_length
);
std::size_t encrypt_random_length();
std::size_t encrypt(
std::uint8_t const * plaintext, std::size_t plaintext_length,
std::uint8_t const * random, std::size_t random_length,
std::uint8_t * output, std::size_t max_output_length
);
std::size_t decrypt_max_plaintext_length(
std::size_t input_length
);
std::size_t decrypt(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * plaintext, std::size_t max_plaintext_length
);
};
} // namespace axololt

331
src/axolotl.cpp Normal file
View File

@ -0,0 +1,331 @@
#include "axolotl/axolotl.hh"
namespace {
std::uint8_t PROTOCOL_VERSION = 3;
std::size_t MAC_LENGTH = 8;
std::size_t KEY_LENGTH = Curve25519PublicKey::Length;
std::uint8_t MESSAGE_KEY_SEED[1] = {0x01};
std::uint8_t CHAIN_KEY_SEED[1] = {0x02};
std::size_t MAX_MESSAGE_GAP = 2000;
void create_chain_key(
axolotl::SharedKey const & root_key,
Curve25519KeyPair const & our_key,
Curve25519PublicKey const & their_key,
std::uint8_t const * info, std::size_t info_length,
SharedSecret & new_root_key,
ChainKey & new_chain_key
) {
axolotl::SharedSecret secret;
axolotl::curve25519_shared_secret(our_key, their_key, secret);
std::uint8_t derived_secrets[64];
axolotl::hkdf_sha256(
secret, sizeof(secret),
root_key, sizeof(root_key),
info, info_length,
derived_secrets, sizeof(derived_secrets)
);
std::memcpy(new_root_key, derived_secrets, 32);
std::memcpy(new_chain_key.key, derived_secrets + 32, 32);
new_chain_key.index = 0;
std::memset(derived_secrets, 0, sizeof(derived_secrets);
std::memset(secret, 0, sizeof(secret));
}
void advance_chain_key(
ChainKey const & chain_key,
ChainKey & new_chain_key,
) {
axolotl::hmac_sha256(
chain_key.key, sizeof(chain_key.key),
CHAIN_KEY_SEED, sizeof(CHAIN_KEY_SEED),
new_chain_key.key
);
new_chain_key.index = chain_key.index + 1;
}
void create_message_keys(
ChainKey const & chain_key,
std::uint8_t const * info, std::size_t info_length,
MessageKey & message_key
) {
axolotl::SharedSecret secret;
axolotl::hmac_sha256(
chain_key.key, sizeof(chain_key.key),
MESSAGE_KEY_SEED, sizeof(MESSAGE_KEY_SEED),
secret
);
std::uint8_t derived_secrets[80];
axolotl::hkdf_sha256(
secret, sizeof(secret),
root_key, sizeof(root_key),
info, info_length,
derived_secrets, sizeof(derived_secrets)
);
std::memcpy(message_key.cipher_key, derived_secrets, 32);
std::memcpy(message_key.mac_key, derived_secrets + 32, 32);
std::memcpy(message_key.iv, derived_secrets + 64, 16);
message_key.index = chain_key.index;
std::memset(derived_secrets, 0, sizeof(derived_secrets);
std::memset(secret, 0, sizeof(secret));
}
bool verify_mac(
MessageKey const & message_key,
std::uint8_t const * input,
axolotl::MessageReader const & reader
) {
std::uint8_t mac[HMAC_SHA256_OUTPUT_LENGTH];
axolotl::hmac_sha256(
keys.mac_key, sizeof(keys.mac_key),
ciphertext, reader.body_length,
mac
);
bool result = std::memcmp(mac, reader.mac, MAC_LENGTH) == 0;
std::memset(&mac, 0, HMAC_SHA256_OUTPUT_LENGTH);
return result;
}
bool verify_mac_for_existing_chain(
axolotl::Session const & session,
axolotl::ReceiverChain const & chain,
std::uint8_t const * input,
axolotl::MessageReader const & reader
) {
ReceiverChain new_chain = chain;
if (reader.counter < chain.index) {
return false;
}
/* Limit the number of hashes we're prepared to compute */
if (reader.counter - chain.index > MAX_MESSAGE_GAP) {
return false;
}
while (new_chain.index < reader.counter) {
advance_chain_key(new_chain, new_chain);
}
MessageKey message_key;
create_message_keys(
new_chain_key, sender.message_info, sender.message_info_length,
message_key
);
bool result = verify_mac(message_key, input, reader);
std::memset(&new_chain, 0, sizeof(new_chain.ratchet_key);
return result;
}
bool verify_mac_for_new_chain(
axolotl::Session const & session,
std::uint8_t const * input,
axolotl::MessageReader const & reader
) {
SharedSecret new_root_key;
ReceiverChain new_chain;
/* They shouldn't move to a new chain until we've sent them a message
* acknowledging the last one */
if (session.sender_chain.empty()) {
return false;
}
/* Limit the number of hashes we're prepared to compute */
if (reader.counter > MAX_MESSAGE_GAP) {
return false;
}
std::memcpy(new_chain.ratchet_key, reader.ratchet_key, KEY_LENGTH);
create_chain_key(
root_key, sender_chain[0].ratchet_key, new_chain.ratchet_key,
session.kdf_info.ratchet_info, session.kdf_info.ratchet_info_length,
new_root_key, new_chain
);
bool result = verify_mac_for_existing_chain(
session, new_chain, input, reader
);
std::memset(&new_root_key, 0, sizeof(new_root_key));
std::memset(&new_chain, 0, sizeof(new_chain.ratchet_key);
return result;
}
} // namespace
std::size_t axolotl::Session::encrypt_max_output_length(
std::size_t plaintext_length
) {
std::size_t key_length = 1 + varstring_length(Curve25519PublicKey::Length);
std::size_t counter = sender_chain.empty() ? 0 : sender_chain[0].index;
std::size_t padded = axolotl::aes_encrypt_cbc_length(plaintext_length);
return axolotl::encode_message_length(
counter, KEY_LENGTH, padded, MAC_LENGTH
);
}
std::size_t axolotl::Session::encrypt_random_length() {
return sender_chain.size() ? Curve25519PublicKey::Length : 0;
}
std::size_t axolotl::Session::encrypt(
std::uint8_t const * plaintext, std::size_t plaintext_length,
std::uint8_t const * random, std::size_t random_length,
std::uint8_t * output, std::size_t max_output_length
) {
if (random_length < encrypt_random_length()) {
last_error = axolotl::ErrorCode::NOT_ENOUGH_RANDOM;
return std::size_t(-1);
}
if (max_output_length < encrypt_max_output_length()) {
last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
return std::size_t(-1);
}
if (sender_chain.empty()) {
/** create sender chain */
}
MessageKey keys;
/** create message keys and advance chain */
std::size_t padded = axolotl::aes_encrypt_cbc_length(plaintext_length);
std::size_t key_length = Curve25519PublicKey::Length;
std::uint32_t counter = keys.index;
const Curve25519PublicKey &ratchet_key = sender_chain[0].ratchet_key;
axolotl::MessageWriter writer(axolotl::encode_message(
PROTOCOL_VERSION, counter, key_length, padded, cipher_text
));
std::memcpy(writer.ratchet_key, ratchet_key.public_key, key_length);
axolotl::aes_encrypt_cbc(
keys.cipher_key, keys.iv,
plaintext, plaintext_length,
writer.ciphertext
);
std::uint8_t mac[HMAC_SHA256_OUTPUT_LENGTH];
axolotl::hmac_sha256(
keys.mac_key, sizeof(keys.mac_key),
ciphertext, writer.body_length,
mac
);
std::memcpy(writer.mac, mac, MAC_LENGTH);
return writer.body_length + MAC_LENGTH;
}
std::size_t decrypt_max_plaintext_length(
std::size_t input_length
) {
return input_length;
}
std::size_t axolotl::Session::decrypt(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * plaintext, std::size_t max_plaintext_length
) {
if (max_plaintext_length < decrypt_max_plaintext_length(input_length)) {
last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
return std::size_t(-1);
}
axolotl::MessageReader reader(axolotl::decode_message(
input, input_length, MAC_LENGTH
));
if (reader.version != PROTOCOL_VERSION) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_VERSION;
return std::size_t(-1);
}
if (reader.body_length == 0
|| reader.ratchet_key_length != Curve25519PublicKey::Length) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_FORMAT;
return std::size_t(-1);
}
ReceiverChain * chain = NULL;
for (axolotl::ReceiverChain & receiver_chain : receiver_chains) {
if (0 == std::memcmp(
receiver_chain.ratchet_key, reader.ratchet_key, KEY_LENGTH
)) {
chain = &receiver_chain;
break;
}
}
if (!chain) {
if (!verify_mac_for_new_chain(*this, input, reader)) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
return std::size_t(-1);
}
} else {
if (chain->index > reader.counter) {
/* Chain already advanced beyond the key for this message
* Check if the message keys are in the skipped key list. */
for (const axolotl::SkippedMessageKey & skipped
: skipped_message_keys) {
if (reader.counter == skipped.message_key.index
&& 0 == std::memcmp(
skipped.ratchet_key, reader.ratchet_key, KEY_LENGTH
)) {
/* Found the key for this message. Check the MAC. */
if (!verify_mac(skipped.message_key, input, reader)) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
return std::size_t(-1);
}
std::size_t result = axolotl::aes_decrypt_cbc(
skipped.message_key.cipher_key,
skipped.message_key.iv,
reader.ciphertext, reader.ciphertext_length,
plaintext
);
if (result == std::size_t(-1)) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
return result;
}
/* Remove the key from the skipped keys now that we've
* decoded the message it corresponds to. */
skipped_message_keys.erase(&skipped);
return result;
}
}
/* No matching keys for the message, fail with bad mac */
last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
return std::size_t(-1);
} else if (!verify_mac_for_existing_chain(*chain, input, reader)) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
return std::size_t(-1);
}
}
if (!chain) {
}
}