feature: Remove support for crypto-algorithms and LibreSSL.

This cuts support for old cryptographic primitives, leaving only OpenSSL
support. ed25519 crypto still uses a vendored ed25519-donna
implementation.
openssl-libolm
Denis Kasak 2021-12-14 21:47:11 +01:00
parent 5f6e9c5dc5
commit b82dab50c9
58 changed files with 4 additions and 6259 deletions

View File

@ -4,8 +4,6 @@ project(olm VERSION 3.2.8 LANGUAGES CXX C)
option(OLM_TESTS "Build tests" ON)
option(BUILD_SHARED_LIBS "Build as a shared library" ON)
option(OLM_USE_OPENSSL "Use OpenSSL instead of bundled crypto-algorithms and curve25519-donna" ON)
option(OLM_USE_LIBRESSL "Use LibreSSL instead of bundled crypto-algorithms" OFF)
add_definitions(-DOLMLIB_VERSION_MAJOR=${PROJECT_VERSION_MAJOR})
add_definitions(-DOLMLIB_VERSION_MINOR=${PROJECT_VERSION_MINOR})
@ -50,22 +48,8 @@ add_library(olm
src/pickle_encoding.c)
add_library(Olm::Olm ALIAS olm)
if(OLM_USE_OPENSSL)
find_package(OpenSSL REQUIRED)
target_link_libraries(olm OpenSSL::Crypto)
target_compile_definitions(olm PRIVATE OLM_USE_OPENSSL)
elseif(OLM_USE_LIBRESSL)
find_package(LibreSSL REQUIRED)
target_link_libraries(olm LibreSSL::Crypto)
target_compile_definitions(olm PRIVATE OLM_USE_LIBRESSL)
target_sources(olm PRIVATE
lib/curve25519-donna/curve25519-donna.c)
else()
target_sources(olm PRIVATE
lib/curve25519-donna/curve25519-donna.c
lib/crypto-algorithms/aes.c
lib/crypto-algorithms/sha256.c)
endif()
find_package(OpenSSL REQUIRED)
target_link_libraries(olm OpenSSL::Crypto)
# restrict the exported symbols
include(GenerateExportHeader)

View File

@ -84,8 +84,8 @@ CPPFLAGS += -Iinclude -Ilib \
-DOLMLIB_VERSION_PATCH=$(PATCH)
# we rely on <stdint.h>, which was introduced in C99
CFLAGS += -Wall -Werror -std=c99 -DOLM_USE_OPENSSL=ON
CXXFLAGS += -Wall -Werror -std=c++11 -DOLM_USE_OPENSSL=ON
CFLAGS += -Wall -Werror -std=c99
CXXFLAGS += -Wall -Werror -std=c++11
LDFLAGS += -Wall -Werror -lcrypto
CFLAGS_NATIVE = -fPIC

View File

@ -1,17 +0,0 @@
crypto-algorithms
=================
About
---
These are basic implementations of standard cryptography algorithms, written by Brad Conte (brad@bradconte.com) from scratch and without any cross-licensing. They exist to provide publically accessible, restriction-free implementations of popular cryptographic algorithms, like AES and SHA-1. These are primarily intended for educational and pragmatic purposes (such as comparing a specification to actual implementation code, or for building an internal application that computes test vectors for a product). The algorithms have been tested against standard test vectors.
This code is released into the public domain free of any restrictions. The author requests acknowledgement if the code is used, but does not require it. This code is provided free of any liability and without any quality claims by the author.
Note that these are *not* cryptographically secure implementations. They have no resistence to side-channel attacks and should not be used in contexts that need cryptographically secure implementations.
These algorithms are not optimized for speed or space. They are primarily designed to be easy to read, although some basic optimization techniques have been employed.
Building
---
The source code for each algorithm will come in a pair of a source code file and a header file. There should be no inter-header file dependencies, no additional libraries, no platform-specific header files, or any other complicating matters. Compiling them should be as easy as adding the relevent source code to the project.

File diff suppressed because it is too large Load Diff

View File

@ -1,123 +0,0 @@
/*********************************************************************
* Filename: aes.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding AES implementation.
*********************************************************************/
#ifndef AES_H
#define AES_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/****************************** MACROS ******************************/
#define AES_BLOCK_SIZE 16 // AES operates on 16 bytes at a time
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
/*********************** FUNCTION DECLARATIONS **********************/
///////////////////
// AES
///////////////////
// Key setup must be done before any AES en/de-cryption functions can be used.
void aes_key_setup(const BYTE key[], // The key, must be 128, 192, or 256 bits
WORD w[], // Output key schedule to be used later
int keysize); // Bit length of the key, 128, 192, or 256
void aes_encrypt(const BYTE in[], // 16 bytes of plaintext
BYTE out[], // 16 bytes of ciphertext
const WORD key[], // From the key setup
int keysize); // Bit length of the key, 128, 192, or 256
void aes_decrypt(const BYTE in[], // 16 bytes of ciphertext
BYTE out[], // 16 bytes of plaintext
const WORD key[], // From the key setup
int keysize); // Bit length of the key, 128, 192, or 256
///////////////////
// AES - CBC
///////////////////
int aes_encrypt_cbc(const BYTE in[], // Plaintext
size_t in_len, // Must be a multiple of AES_BLOCK_SIZE
BYTE out[], // Ciphertext, same length as plaintext
const WORD key[], // From the key setup
int keysize, // Bit length of the key, 128, 192, or 256
const BYTE iv[]); // IV, must be AES_BLOCK_SIZE bytes long
// Only output the CBC-MAC of the input.
int aes_encrypt_cbc_mac(const BYTE in[], // plaintext
size_t in_len, // Must be a multiple of AES_BLOCK_SIZE
BYTE out[], // Output MAC
const WORD key[], // From the key setup
int keysize, // Bit length of the key, 128, 192, or 256
const BYTE iv[]); // IV, must be AES_BLOCK_SIZE bytes long
///////////////////
// AES - CTR
///////////////////
void increment_iv(BYTE iv[], // Must be a multiple of AES_BLOCK_SIZE
int counter_size); // Bytes of the IV used for counting (low end)
void aes_encrypt_ctr(const BYTE in[], // Plaintext
size_t in_len, // Any byte length
BYTE out[], // Ciphertext, same length as plaintext
const WORD key[], // From the key setup
int keysize, // Bit length of the key, 128, 192, or 256
const BYTE iv[]); // IV, must be AES_BLOCK_SIZE bytes long
void aes_decrypt_ctr(const BYTE in[], // Ciphertext
size_t in_len, // Any byte length
BYTE out[], // Plaintext, same length as ciphertext
const WORD key[], // From the key setup
int keysize, // Bit length of the key, 128, 192, or 256
const BYTE iv[]); // IV, must be AES_BLOCK_SIZE bytes long
///////////////////
// AES - CCM
///////////////////
// Returns True if the input parameters do not violate any constraint.
int aes_encrypt_ccm(const BYTE plaintext[], // IN - Plaintext.
WORD plaintext_len, // IN - Plaintext length.
const BYTE associated_data[], // IN - Associated Data included in authentication, but not encryption.
unsigned short associated_data_len, // IN - Associated Data length in bytes.
const BYTE nonce[], // IN - The Nonce to be used for encryption.
unsigned short nonce_len, // IN - Nonce length in bytes.
BYTE ciphertext[], // OUT - Ciphertext, a concatination of the plaintext and the MAC.
WORD *ciphertext_len, // OUT - The length of the ciphertext, always plaintext_len + mac_len.
WORD mac_len, // IN - The desired length of the MAC, must be 4, 6, 8, 10, 12, 14, or 16.
const BYTE key[], // IN - The AES key for encryption.
int keysize); // IN - The length of the key in bits. Valid values are 128, 192, 256.
// Returns True if the input parameters do not violate any constraint.
// Use mac_auth to ensure decryption/validation was preformed correctly.
// If authentication does not succeed, the plaintext is zeroed out. To overwride
// this, call with mac_auth = NULL. The proper proceedure is to decrypt with
// authentication enabled (mac_auth != NULL) and make a second call to that
// ignores authentication explicitly if the first call failes.
int aes_decrypt_ccm(const BYTE ciphertext[], // IN - Ciphertext, the concatination of encrypted plaintext and MAC.
WORD ciphertext_len, // IN - Ciphertext length in bytes.
const BYTE assoc[], // IN - The Associated Data, required for authentication.
unsigned short assoc_len, // IN - Associated Data length in bytes.
const BYTE nonce[], // IN - The Nonce to use for decryption, same one as for encryption.
unsigned short nonce_len, // IN - Nonce length in bytes.
BYTE plaintext[], // OUT - The plaintext that was decrypted. Will need to be large enough to hold ciphertext_len - mac_len.
WORD *plaintext_len, // OUT - Length in bytes of the output plaintext, always ciphertext_len - mac_len .
WORD mac_len, // IN - The length of the MAC that was calculated.
int *mac_auth, // OUT - TRUE if authentication succeeded, FALSE if it did not. NULL pointer will ignore the authentication.
const BYTE key[], // IN - The AES key for decryption.
int keysize); // IN - The length of the key in BITS. Valid values are 128, 192, 256.
///////////////////
// Test functions
///////////////////
int aes_test();
int aes_ecb_test();
int aes_cbc_test();
int aes_ctr_test();
int aes_ccm_test();
#endif // AES_H

View File

@ -1,276 +0,0 @@
/*********************************************************************
* Filename: aes_test.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Performs known-answer tests on the corresponding AES
implementation. These tests do not encompass the full
range of available test vectors and are not sufficient
for FIPS-140 certification. However, if the tests pass
it is very, very likely that the code is correct and was
compiled properly. This code also serves as
example usage of the functions.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdio.h>
#include <memory.h>
#include "aes.h"
/*********************** FUNCTION DEFINITIONS ***********************/
void print_hex(BYTE str[], int len)
{
int idx;
for(idx = 0; idx < len; idx++)
printf("%02x", str[idx]);
}
int aes_ecb_test()
{
WORD key_schedule[60], idx;
BYTE enc_buf[128];
BYTE plaintext[2][16] = {
{0x6b,0xc1,0xbe,0xe2,0x2e,0x40,0x9f,0x96,0xe9,0x3d,0x7e,0x11,0x73,0x93,0x17,0x2a},
{0xae,0x2d,0x8a,0x57,0x1e,0x03,0xac,0x9c,0x9e,0xb7,0x6f,0xac,0x45,0xaf,0x8e,0x51}
};
BYTE ciphertext[2][16] = {
{0xf3,0xee,0xd1,0xbd,0xb5,0xd2,0xa0,0x3c,0x06,0x4b,0x5a,0x7e,0x3d,0xb1,0x81,0xf8},
{0x59,0x1c,0xcb,0x10,0xd4,0x10,0xed,0x26,0xdc,0x5b,0xa7,0x4a,0x31,0x36,0x28,0x70}
};
BYTE key[1][32] = {
{0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0xbe,0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81,0x1f,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7,0x2d,0x98,0x10,0xa3,0x09,0x14,0xdf,0xf4}
};
int pass = 1;
// Raw ECB mode.
//printf("* ECB mode:\n");
aes_key_setup(key[0], key_schedule, 256);
//printf( "Key : ");
//print_hex(key[0], 32);
for(idx = 0; idx < 2; idx++) {
aes_encrypt(plaintext[idx], enc_buf, key_schedule, 256);
//printf("\nPlaintext : ");
//print_hex(plaintext[idx], 16);
//printf("\n-encrypted to: ");
//print_hex(enc_buf, 16);
pass = pass && !memcmp(enc_buf, ciphertext[idx], 16);
aes_decrypt(ciphertext[idx], enc_buf, key_schedule, 256);
//printf("\nCiphertext : ");
//print_hex(ciphertext[idx], 16);
//printf("\n-decrypted to: ");
//print_hex(enc_buf, 16);
pass = pass && !memcmp(enc_buf, plaintext[idx], 16);
//printf("\n\n");
}
return(pass);
}
int aes_cbc_test()
{
WORD key_schedule[60];
BYTE enc_buf[128];
BYTE plaintext[1][32] = {
{0x6b,0xc1,0xbe,0xe2,0x2e,0x40,0x9f,0x96,0xe9,0x3d,0x7e,0x11,0x73,0x93,0x17,0x2a,0xae,0x2d,0x8a,0x57,0x1e,0x03,0xac,0x9c,0x9e,0xb7,0x6f,0xac,0x45,0xaf,0x8e,0x51}
};
BYTE ciphertext[2][32] = {
{0xf5,0x8c,0x4c,0x04,0xd6,0xe5,0xf1,0xba,0x77,0x9e,0xab,0xfb,0x5f,0x7b,0xfb,0xd6,0x9c,0xfc,0x4e,0x96,0x7e,0xdb,0x80,0x8d,0x67,0x9f,0x77,0x7b,0xc6,0x70,0x2c,0x7d}
};
BYTE iv[1][16] = {
{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f}
};
BYTE key[1][32] = {
{0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0xbe,0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81,0x1f,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7,0x2d,0x98,0x10,0xa3,0x09,0x14,0xdf,0xf4}
};
int pass = 1;
//printf("* CBC mode:\n");
aes_key_setup(key[0], key_schedule, 256);
//printf( "Key : ");
//print_hex(key[0], 32);
//printf("\nIV : ");
//print_hex(iv[0], 16);
aes_encrypt_cbc(plaintext[0], 32, enc_buf, key_schedule, 256, iv[0]);
//printf("\nPlaintext : ");
//print_hex(plaintext[0], 32);
//printf("\n-encrypted to: ");
//print_hex(enc_buf, 32);
//printf("\nCiphertext : ");
//print_hex(ciphertext[0], 32);
pass = pass && !memcmp(enc_buf, ciphertext[0], 32);
//printf("\n\n");
return(pass);
}
int aes_ctr_test()
{
WORD key_schedule[60];
BYTE enc_buf[128];
BYTE plaintext[1][32] = {
{0x6b,0xc1,0xbe,0xe2,0x2e,0x40,0x9f,0x96,0xe9,0x3d,0x7e,0x11,0x73,0x93,0x17,0x2a,0xae,0x2d,0x8a,0x57,0x1e,0x03,0xac,0x9c,0x9e,0xb7,0x6f,0xac,0x45,0xaf,0x8e,0x51}
};
BYTE ciphertext[1][32] = {
{0x60,0x1e,0xc3,0x13,0x77,0x57,0x89,0xa5,0xb7,0xa7,0xf5,0x04,0xbb,0xf3,0xd2,0x28,0xf4,0x43,0xe3,0xca,0x4d,0x62,0xb5,0x9a,0xca,0x84,0xe9,0x90,0xca,0xca,0xf5,0xc5}
};
BYTE iv[1][16] = {
{0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff},
};
BYTE key[1][32] = {
{0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0xbe,0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81,0x1f,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7,0x2d,0x98,0x10,0xa3,0x09,0x14,0xdf,0xf4}
};
int pass = 1;
//printf("* CTR mode:\n");
aes_key_setup(key[0], key_schedule, 256);
//printf( "Key : ");
//print_hex(key[0], 32);
//printf("\nIV : ");
//print_hex(iv[0], 16);
aes_encrypt_ctr(plaintext[0], 32, enc_buf, key_schedule, 256, iv[0]);
//printf("\nPlaintext : ");
//print_hex(plaintext[0], 32);
//printf("\n-encrypted to: ");
//print_hex(enc_buf, 32);
pass = pass && !memcmp(enc_buf, ciphertext[0], 32);
aes_decrypt_ctr(ciphertext[0], 32, enc_buf, key_schedule, 256, iv[0]);
//printf("\nCiphertext : ");
//print_hex(ciphertext[0], 32);
//printf("\n-decrypted to: ");
//print_hex(enc_buf, 32);
pass = pass && !memcmp(enc_buf, plaintext[0], 32);
//printf("\n\n");
return(pass);
}
int aes_ccm_test()
{
int mac_auth;
WORD enc_buf_len;
BYTE enc_buf[128];
BYTE plaintext[3][32] = {
{0x20,0x21,0x22,0x23},
{0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f},
{0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37}
};
BYTE assoc[3][32] = {
{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07},
{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f},
{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13}
};
BYTE ciphertext[3][32 + 16] = {
{0x71,0x62,0x01,0x5b,0x4d,0xac,0x25,0x5d},
{0xd2,0xa1,0xf0,0xe0,0x51,0xea,0x5f,0x62,0x08,0x1a,0x77,0x92,0x07,0x3d,0x59,0x3d,0x1f,0xc6,0x4f,0xbf,0xac,0xcd},
{0xe3,0xb2,0x01,0xa9,0xf5,0xb7,0x1a,0x7a,0x9b,0x1c,0xea,0xec,0xcd,0x97,0xe7,0x0b,0x61,0x76,0xaa,0xd9,0xa4,0x42,0x8a,0xa5,0x48,0x43,0x92,0xfb,0xc1,0xb0,0x99,0x51}
};
BYTE iv[3][16] = {
{0x10,0x11,0x12,0x13,0x14,0x15,0x16},
{0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17},
{0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b}
};
BYTE key[1][32] = {
{0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f}
};
int pass = 1;
//printf("* CCM mode:\n");
//printf("Key : ");
//print_hex(key[0], 16);
//print_hex(plaintext[0], 4);
//print_hex(assoc[0], 8);
//print_hex(ciphertext[0], 8);
//print_hex(iv[0], 7);
//print_hex(key[0], 16);
aes_encrypt_ccm(plaintext[0], 4, assoc[0], 8, iv[0], 7, enc_buf, &enc_buf_len, 4, key[0], 128);
//printf("\nNONCE : ");
//print_hex(iv[0], 7);
//printf("\nAssoc. Data : ");
//print_hex(assoc[0], 8);
//printf("\nPayload : ");
//print_hex(plaintext[0], 4);
//printf("\n-encrypted to: ");
//print_hex(enc_buf, enc_buf_len);
pass = pass && !memcmp(enc_buf, ciphertext[0], enc_buf_len);
aes_decrypt_ccm(ciphertext[0], 8, assoc[0], 8, iv[0], 7, enc_buf, &enc_buf_len, 4, &mac_auth, key[0], 128);
//printf("\n-Ciphertext : ");
//print_hex(ciphertext[0], 8);
//printf("\n-decrypted to: ");
//print_hex(enc_buf, enc_buf_len);
//printf("\nAuthenticated: %d ", mac_auth);
pass = pass && !memcmp(enc_buf, plaintext[0], enc_buf_len) && mac_auth;
aes_encrypt_ccm(plaintext[1], 16, assoc[1], 16, iv[1], 8, enc_buf, &enc_buf_len, 6, key[0], 128);
//printf("\n\nNONCE : ");
//print_hex(iv[1], 8);
//printf("\nAssoc. Data : ");
//print_hex(assoc[1], 16);
//printf("\nPayload : ");
//print_hex(plaintext[1], 16);
//printf("\n-encrypted to: ");
//print_hex(enc_buf, enc_buf_len);
pass = pass && !memcmp(enc_buf, ciphertext[1], enc_buf_len);
aes_decrypt_ccm(ciphertext[1], 22, assoc[1], 16, iv[1], 8, enc_buf, &enc_buf_len, 6, &mac_auth, key[0], 128);
//printf("\n-Ciphertext : ");
//print_hex(ciphertext[1], 22);
//printf("\n-decrypted to: ");
//print_hex(enc_buf, enc_buf_len);
//printf("\nAuthenticated: %d ", mac_auth);
pass = pass && !memcmp(enc_buf, plaintext[1], enc_buf_len) && mac_auth;
aes_encrypt_ccm(plaintext[2], 24, assoc[2], 20, iv[2], 12, enc_buf, &enc_buf_len, 8, key[0], 128);
//printf("\n\nNONCE : ");
//print_hex(iv[2], 12);
//printf("\nAssoc. Data : ");
//print_hex(assoc[2], 20);
//printf("\nPayload : ");
//print_hex(plaintext[2], 24);
//printf("\n-encrypted to: ");
//print_hex(enc_buf, enc_buf_len);
pass = pass && !memcmp(enc_buf, ciphertext[2], enc_buf_len);
aes_decrypt_ccm(ciphertext[2], 32, assoc[2], 20, iv[2], 12, enc_buf, &enc_buf_len, 8, &mac_auth, key[0], 128);
//printf("\n-Ciphertext : ");
//print_hex(ciphertext[2], 32);
//printf("\n-decrypted to: ");
//print_hex(enc_buf, enc_buf_len);
//printf("\nAuthenticated: %d ", mac_auth);
pass = pass && !memcmp(enc_buf, plaintext[2], enc_buf_len) && mac_auth;
//printf("\n\n");
return(pass);
}
int aes_test()
{
int pass = 1;
pass = pass && aes_ecb_test();
pass = pass && aes_cbc_test();
pass = pass && aes_ctr_test();
pass = pass && aes_ccm_test();
return(pass);
}
int main(int argc, char *argv[])
{
printf("AES Tests: %s\n", aes_test() ? "SUCCEEDED" : "FAILED");
return(0);
}

View File

@ -1,45 +0,0 @@
/*********************************************************************
* Filename: arcfour.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the ARCFOUR encryption algorithm.
Algorithm specification can be found here:
* http://en.wikipedia.org/wiki/RC4
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include "arcfour.h"
/*********************** FUNCTION DEFINITIONS ***********************/
void arcfour_key_setup(BYTE state[], const BYTE key[], int len)
{
int i, j;
BYTE t;
for (i = 0; i < 256; ++i)
state[i] = i;
for (i = 0, j = 0; i < 256; ++i) {
j = (j + state[i] + key[i % len]) % 256;
t = state[i];
state[i] = state[j];
state[j] = t;
}
}
void arcfour_generate_stream(BYTE state[], BYTE out[], size_t len)
{
int i, j;
size_t idx;
BYTE t;
for (idx = 0, i = 0, j = 0; idx < len; ++idx) {
i = (i + 1) % 256;
j = (j + state[i]) % 256;
t = state[i];
state[i] = state[j];
state[j] = t;
out[idx] = state[(state[i] + state[j]) % 256];
}
}

View File

@ -1,30 +0,0 @@
/*********************************************************************
* Filename: arcfour.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding ARCFOUR implementation.
*********************************************************************/
#ifndef ARCFOUR_H
#define ARCFOUR_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
/*********************** FUNCTION DECLARATIONS **********************/
// Input: state - the state used to generate the keystream
// key - Key to use to initialize the state
// len - length of key in bytes (valid lenth is 1 to 256)
void arcfour_key_setup(BYTE state[], const BYTE key[], int len);
// Pseudo-Random Generator Algorithm
// Input: state - the state used to generate the keystream
// out - Must be allocated to be of at least "len" length
// len - number of bytes to generate
void arcfour_generate_stream(BYTE state[], BYTE out[], size_t len);
#endif // ARCFOUR_H

View File

@ -1,47 +0,0 @@
/*********************************************************************
* Filename: arcfour_test.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Performs known-answer tests on the corresponding ARCFOUR
implementation. These tests do not encompass the full
range of available test vectors, however, if the tests
pass it is very, very likely that the code is correct
and was compiled properly. This code also serves as
example usage of the functions.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdio.h>
#include <memory.h>
#include "arcfour.h"
/*********************** FUNCTION DEFINITIONS ***********************/
int rc4_test()
{
BYTE state[256];
BYTE key[3][10] = {{"Key"}, {"Wiki"}, {"Secret"}};
BYTE stream[3][10] = {{0xEB,0x9F,0x77,0x81,0xB7,0x34,0xCA,0x72,0xA7,0x19},
{0x60,0x44,0xdb,0x6d,0x41,0xb7},
{0x04,0xd4,0x6b,0x05,0x3c,0xa8,0x7b,0x59}};
int stream_len[3] = {10,6,8};
BYTE buf[1024];
int idx;
int pass = 1;
// Only test the output stream. Note that the state can be reused.
for (idx = 0; idx < 3; idx++) {
arcfour_key_setup(state, key[idx], strlen(key[idx]));
arcfour_generate_stream(state, buf, stream_len[idx]);
pass = pass && !memcmp(stream[idx], buf, stream_len[idx]);
}
return(pass);
}
int main()
{
printf("ARCFOUR tests: %s\n", rc4_test() ? "SUCCEEDED" : "FAILED");
return(0);
}

View File

@ -1,135 +0,0 @@
/*********************************************************************
* Filename: base64.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the Base64 encoding algorithm.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include "base64.h"
/****************************** MACROS ******************************/
#define NEWLINE_INVL 76
/**************************** VARIABLES *****************************/
// Note: To change the charset to a URL encoding, replace the '+' and '/' with '*' and '-'
static const BYTE charset[]={"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"};
/*********************** FUNCTION DEFINITIONS ***********************/
BYTE revchar(char ch)
{
if (ch >= 'A' && ch <= 'Z')
ch -= 'A';
else if (ch >= 'a' && ch <='z')
ch = ch - 'a' + 26;
else if (ch >= '0' && ch <='9')
ch = ch - '0' + 52;
else if (ch == '+')
ch = 62;
else if (ch == '/')
ch = 63;
return(ch);
}
size_t base64_encode(const BYTE in[], BYTE out[], size_t len, int newline_flag)
{
size_t idx, idx2, blks, blk_ceiling, left_over, newline_count = 0;
blks = (len / 3);
left_over = len % 3;
if (out == NULL) {
idx2 = blks * 4 ;
if (left_over)
idx2 += 4;
if (newline_flag)
idx2 += len / 57; // (NEWLINE_INVL / 4) * 3 = 57. One newline per 57 input bytes.
}
else {
// Since 3 input bytes = 4 output bytes, determine out how many even sets of
// 3 bytes the input has.
blk_ceiling = blks * 3;
for (idx = 0, idx2 = 0; idx < blk_ceiling; idx += 3, idx2 += 4) {
out[idx2] = charset[in[idx] >> 2];
out[idx2 + 1] = charset[((in[idx] & 0x03) << 4) | (in[idx + 1] >> 4)];
out[idx2 + 2] = charset[((in[idx + 1] & 0x0f) << 2) | (in[idx + 2] >> 6)];
out[idx2 + 3] = charset[in[idx + 2] & 0x3F];
// The offical standard requires a newline every 76 characters.
// (Eg, first newline is character 77 of the output.)
if (((idx2 - newline_count + 4) % NEWLINE_INVL == 0) && newline_flag) {
out[idx2 + 4] = '\n';
idx2++;
newline_count++;
}
}
if (left_over == 1) {
out[idx2] = charset[in[idx] >> 2];
out[idx2 + 1] = charset[(in[idx] & 0x03) << 4];
out[idx2 + 2] = '=';
out[idx2 + 3] = '=';
idx2 += 4;
}
else if (left_over == 2) {
out[idx2] = charset[in[idx] >> 2];
out[idx2 + 1] = charset[((in[idx] & 0x03) << 4) | (in[idx + 1] >> 4)];
out[idx2 + 2] = charset[(in[idx + 1] & 0x0F) << 2];
out[idx2 + 3] = '=';
idx2 += 4;
}
}
return(idx2);
}
size_t base64_decode(const BYTE in[], BYTE out[], size_t len)
{
BYTE ch;
size_t idx, idx2, blks, blk_ceiling, left_over;
if (in[len - 1] == '=')
len--;
if (in[len - 1] == '=')
len--;
blks = len / 4;
left_over = len % 4;
if (out == NULL) {
if (len >= 77 && in[NEWLINE_INVL] == '\n') // Verify that newlines where used.
len -= len / (NEWLINE_INVL + 1);
blks = len / 4;
left_over = len % 4;
idx = blks * 3;
if (left_over == 2)
idx ++;
else if (left_over == 3)
idx += 2;
}
else {
blk_ceiling = blks * 4;
for (idx = 0, idx2 = 0; idx2 < blk_ceiling; idx += 3, idx2 += 4) {
if (in[idx2] == '\n')
idx2++;
out[idx] = (revchar(in[idx2]) << 2) | ((revchar(in[idx2 + 1]) & 0x30) >> 4);
out[idx + 1] = (revchar(in[idx2 + 1]) << 4) | (revchar(in[idx2 + 2]) >> 2);
out[idx + 2] = (revchar(in[idx2 + 2]) << 6) | revchar(in[idx2 + 3]);
}
if (left_over == 2) {
out[idx] = (revchar(in[idx2]) << 2) | ((revchar(in[idx2 + 1]) & 0x30) >> 4);
idx++;
}
else if (left_over == 3) {
out[idx] = (revchar(in[idx2]) << 2) | ((revchar(in[idx2 + 1]) & 0x30) >> 4);
out[idx + 1] = (revchar(in[idx2 + 1]) << 4) | (revchar(in[idx2 + 2]) >> 2);
idx += 2;
}
}
return(idx);
}

View File

@ -1,27 +0,0 @@
/*********************************************************************
* Filename: base64.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding Base64 implementation.
*********************************************************************/
#ifndef BASE64_H
#define BASE64_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
/*********************** FUNCTION DECLARATIONS **********************/
// Returns the size of the output. If called with out = NULL, will just return
// the size of what the output would have been (without a terminating NULL).
size_t base64_encode(const BYTE in[], BYTE out[], size_t len, int newline_flag);
// Returns the size of the output. If called with out = NULL, will just return
// the size of what the output would have been (without a terminating NULL).
size_t base64_decode(const BYTE in[], BYTE out[], size_t len);
#endif // BASE64_H

View File

@ -1,54 +0,0 @@
/*********************************************************************
* Filename: blowfish_test.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Performs known-answer tests on the corresponding Base64
implementation. These tests do not encompass the full
range of available test vectors, however, if the tests
pass it is very, very likely that the code is correct
and was compiled properly. This code also serves as
example usage of the functions.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdio.h>
#include <memory.h>
#include "base64.h"
/*********************** FUNCTION DEFINITIONS ***********************/
int base64_test()
{
BYTE text[3][1024] = {{"fo"},
{"foobar"},
{"Man is distinguished, not only by his reason, but by this singular passion from other animals, which is a lust of the mind, that by a perseverance of delight in the continued and indefatigable generation of knowledge, exceeds the short vehemence of any carnal pleasure."}};
BYTE code[3][1024] = {{"Zm8="},
{"Zm9vYmFy"},
{"TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24sIGJ1dCBieSB0aGlz\nIHNpbmd1bGFyIHBhc3Npb24gZnJvbSBvdGhlciBhbmltYWxzLCB3aGljaCBpcyBhIGx1c3Qgb2Yg\ndGhlIG1pbmQsIHRoYXQgYnkgYSBwZXJzZXZlcmFuY2Ugb2YgZGVsaWdodCBpbiB0aGUgY29udGlu\ndWVkIGFuZCBpbmRlZmF0aWdhYmxlIGdlbmVyYXRpb24gb2Yga25vd2xlZGdlLCBleGNlZWRzIHRo\nZSBzaG9ydCB2ZWhlbWVuY2Ugb2YgYW55IGNhcm5hbCBwbGVhc3VyZS4="}};
BYTE buf[1024];
size_t buf_len;
int pass = 1;
int idx;
for (idx = 0; idx < 3; idx++) {
buf_len = base64_encode(text[idx], buf, strlen(text[idx]), 1);
pass = pass && ((buf_len == strlen(code[idx])) &&
(buf_len == base64_encode(text[idx], NULL, strlen(text[idx]), 1)));
pass = pass && !strcmp(code[idx], buf);
memset(buf, 0, sizeof(buf));
buf_len = base64_decode(code[idx], buf, strlen(code[idx]));
pass = pass && ((buf_len == strlen(text[idx])) &&
(buf_len == base64_decode(code[idx], NULL, strlen(code[idx]))));
pass = pass && !strcmp(text[idx], buf);
}
return(pass);
}
int main()
{
printf("Base64 tests: %s\n", base64_test() ? "PASSED" : "FAILED");
return 0;
}

View File

@ -1,269 +0,0 @@
/*********************************************************************
* Filename: blowfish.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the Blowfish encryption algorithm.
Modes of operation (such as CBC) are not included.
Algorithm specification can be found here:
* http://www.schneier.com/blowfish.html
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "blowfish.h"
/****************************** MACROS ******************************/
#define F(x,t) t = keystruct->s[0][(x) >> 24]; \
t += keystruct->s[1][((x) >> 16) & 0xff]; \
t ^= keystruct->s[2][((x) >> 8) & 0xff]; \
t += keystruct->s[3][(x) & 0xff];
#define swap(r,l,t) t = l; l = r; r = t;
#define ITERATION(l,r,t,pval) l ^= keystruct->p[pval]; F(l,t); r^= t; swap(r,l,t);
/**************************** VARIABLES *****************************/
static const WORD p_perm[18] = {
0x243F6A88,0x85A308D3,0x13198A2E,0x03707344,0xA4093822,0x299F31D0,0x082EFA98,
0xEC4E6C89,0x452821E6,0x38D01377,0xBE5466CF,0x34E90C6C,0xC0AC29B7,0xC97C50DD,
0x3F84D5B5,0xB5470917,0x9216D5D9,0x8979FB1B
};
static const WORD s_perm[4][256] = { {
0xD1310BA6,0x98DFB5AC,0x2FFD72DB,0xD01ADFB7,0xB8E1AFED,0x6A267E96,0xBA7C9045,0xF12C7F99,
0x24A19947,0xB3916CF7,0x0801F2E2,0x858EFC16,0x636920D8,0x71574E69,0xA458FEA3,0xF4933D7E,
0x0D95748F,0x728EB658,0x718BCD58,0x82154AEE,0x7B54A41D,0xC25A59B5,0x9C30D539,0x2AF26013,
0xC5D1B023,0x286085F0,0xCA417918,0xB8DB38EF,0x8E79DCB0,0x603A180E,0x6C9E0E8B,0xB01E8A3E,
0xD71577C1,0xBD314B27,0x78AF2FDA,0x55605C60,0xE65525F3,0xAA55AB94,0x57489862,0x63E81440,
0x55CA396A,0x2AAB10B6,0xB4CC5C34,0x1141E8CE,0xA15486AF,0x7C72E993,0xB3EE1411,0x636FBC2A,
0x2BA9C55D,0x741831F6,0xCE5C3E16,0x9B87931E,0xAFD6BA33,0x6C24CF5C,0x7A325381,0x28958677,
0x3B8F4898,0x6B4BB9AF,0xC4BFE81B,0x66282193,0x61D809CC,0xFB21A991,0x487CAC60,0x5DEC8032,
0xEF845D5D,0xE98575B1,0xDC262302,0xEB651B88,0x23893E81,0xD396ACC5,0x0F6D6FF3,0x83F44239,
0x2E0B4482,0xA4842004,0x69C8F04A,0x9E1F9B5E,0x21C66842,0xF6E96C9A,0x670C9C61,0xABD388F0,
0x6A51A0D2,0xD8542F68,0x960FA728,0xAB5133A3,0x6EEF0B6C,0x137A3BE4,0xBA3BF050,0x7EFB2A98,
0xA1F1651D,0x39AF0176,0x66CA593E,0x82430E88,0x8CEE8619,0x456F9FB4,0x7D84A5C3,0x3B8B5EBE,
0xE06F75D8,0x85C12073,0x401A449F,0x56C16AA6,0x4ED3AA62,0x363F7706,0x1BFEDF72,0x429B023D,
0x37D0D724,0xD00A1248,0xDB0FEAD3,0x49F1C09B,0x075372C9,0x80991B7B,0x25D479D8,0xF6E8DEF7,
0xE3FE501A,0xB6794C3B,0x976CE0BD,0x04C006BA,0xC1A94FB6,0x409F60C4,0x5E5C9EC2,0x196A2463,
0x68FB6FAF,0x3E6C53B5,0x1339B2EB,0x3B52EC6F,0x6DFC511F,0x9B30952C,0xCC814544,0xAF5EBD09,
0xBEE3D004,0xDE334AFD,0x660F2807,0x192E4BB3,0xC0CBA857,0x45C8740F,0xD20B5F39,0xB9D3FBDB,
0x5579C0BD,0x1A60320A,0xD6A100C6,0x402C7279,0x679F25FE,0xFB1FA3CC,0x8EA5E9F8,0xDB3222F8,
0x3C7516DF,0xFD616B15,0x2F501EC8,0xAD0552AB,0x323DB5FA,0xFD238760,0x53317B48,0x3E00DF82,
0x9E5C57BB,0xCA6F8CA0,0x1A87562E,0xDF1769DB,0xD542A8F6,0x287EFFC3,0xAC6732C6,0x8C4F5573,
0x695B27B0,0xBBCA58C8,0xE1FFA35D,0xB8F011A0,0x10FA3D98,0xFD2183B8,0x4AFCB56C,0x2DD1D35B,
0x9A53E479,0xB6F84565,0xD28E49BC,0x4BFB9790,0xE1DDF2DA,0xA4CB7E33,0x62FB1341,0xCEE4C6E8,
0xEF20CADA,0x36774C01,0xD07E9EFE,0x2BF11FB4,0x95DBDA4D,0xAE909198,0xEAAD8E71,0x6B93D5A0,
0xD08ED1D0,0xAFC725E0,0x8E3C5B2F,0x8E7594B7,0x8FF6E2FB,0xF2122B64,0x8888B812,0x900DF01C,
0x4FAD5EA0,0x688FC31C,0xD1CFF191,0xB3A8C1AD,0x2F2F2218,0xBE0E1777,0xEA752DFE,0x8B021FA1,
0xE5A0CC0F,0xB56F74E8,0x18ACF3D6,0xCE89E299,0xB4A84FE0,0xFD13E0B7,0x7CC43B81,0xD2ADA8D9,
0x165FA266,0x80957705,0x93CC7314,0x211A1477,0xE6AD2065,0x77B5FA86,0xC75442F5,0xFB9D35CF,
0xEBCDAF0C,0x7B3E89A0,0xD6411BD3,0xAE1E7E49,0x00250E2D,0x2071B35E,0x226800BB,0x57B8E0AF,
0x2464369B,0xF009B91E,0x5563911D,0x59DFA6AA,0x78C14389,0xD95A537F,0x207D5BA2,0x02E5B9C5,
0x83260376,0x6295CFA9,0x11C81968,0x4E734A41,0xB3472DCA,0x7B14A94A,0x1B510052,0x9A532915,
0xD60F573F,0xBC9BC6E4,0x2B60A476,0x81E67400,0x08BA6FB5,0x571BE91F,0xF296EC6B,0x2A0DD915,
0xB6636521,0xE7B9F9B6,0xFF34052E,0xC5855664,0x53B02D5D,0xA99F8FA1,0x08BA4799,0x6E85076A
},{
0x4B7A70E9,0xB5B32944,0xDB75092E,0xC4192623,0xAD6EA6B0,0x49A7DF7D,0x9CEE60B8,0x8FEDB266,
0xECAA8C71,0x699A17FF,0x5664526C,0xC2B19EE1,0x193602A5,0x75094C29,0xA0591340,0xE4183A3E,
0x3F54989A,0x5B429D65,0x6B8FE4D6,0x99F73FD6,0xA1D29C07,0xEFE830F5,0x4D2D38E6,0xF0255DC1,
0x4CDD2086,0x8470EB26,0x6382E9C6,0x021ECC5E,0x09686B3F,0x3EBAEFC9,0x3C971814,0x6B6A70A1,
0x687F3584,0x52A0E286,0xB79C5305,0xAA500737,0x3E07841C,0x7FDEAE5C,0x8E7D44EC,0x5716F2B8,
0xB03ADA37,0xF0500C0D,0xF01C1F04,0x0200B3FF,0xAE0CF51A,0x3CB574B2,0x25837A58,0xDC0921BD,
0xD19113F9,0x7CA92FF6,0x94324773,0x22F54701,0x3AE5E581,0x37C2DADC,0xC8B57634,0x9AF3DDA7,
0xA9446146,0x0FD0030E,0xECC8C73E,0xA4751E41,0xE238CD99,0x3BEA0E2F,0x3280BBA1,0x183EB331,
0x4E548B38,0x4F6DB908,0x6F420D03,0xF60A04BF,0x2CB81290,0x24977C79,0x5679B072,0xBCAF89AF,
0xDE9A771F,0xD9930810,0xB38BAE12,0xDCCF3F2E,0x5512721F,0x2E6B7124,0x501ADDE6,0x9F84CD87,
0x7A584718,0x7408DA17,0xBC9F9ABC,0xE94B7D8C,0xEC7AEC3A,0xDB851DFA,0x63094366,0xC464C3D2,
0xEF1C1847,0x3215D908,0xDD433B37,0x24C2BA16,0x12A14D43,0x2A65C451,0x50940002,0x133AE4DD,
0x71DFF89E,0x10314E55,0x81AC77D6,0x5F11199B,0x043556F1,0xD7A3C76B,0x3C11183B,0x5924A509,
0xF28FE6ED,0x97F1FBFA,0x9EBABF2C,0x1E153C6E,0x86E34570,0xEAE96FB1,0x860E5E0A,0x5A3E2AB3,
0x771FE71C,0x4E3D06FA,0x2965DCB9,0x99E71D0F,0x803E89D6,0x5266C825,0x2E4CC978,0x9C10B36A,
0xC6150EBA,0x94E2EA78,0xA5FC3C53,0x1E0A2DF4,0xF2F74EA7,0x361D2B3D,0x1939260F,0x19C27960,
0x5223A708,0xF71312B6,0xEBADFE6E,0xEAC31F66,0xE3BC4595,0xA67BC883,0xB17F37D1,0x018CFF28,
0xC332DDEF,0xBE6C5AA5,0x65582185,0x68AB9802,0xEECEA50F,0xDB2F953B,0x2AEF7DAD,0x5B6E2F84,
0x1521B628,0x29076170,0xECDD4775,0x619F1510,0x13CCA830,0xEB61BD96,0x0334FE1E,0xAA0363CF,
0xB5735C90,0x4C70A239,0xD59E9E0B,0xCBAADE14,0xEECC86BC,0x60622CA7,0x9CAB5CAB,0xB2F3846E,
0x648B1EAF,0x19BDF0CA,0xA02369B9,0x655ABB50,0x40685A32,0x3C2AB4B3,0x319EE9D5,0xC021B8F7,
0x9B540B19,0x875FA099,0x95F7997E,0x623D7DA8,0xF837889A,0x97E32D77,0x11ED935F,0x16681281,
0x0E358829,0xC7E61FD6,0x96DEDFA1,0x7858BA99,0x57F584A5,0x1B227263,0x9B83C3FF,0x1AC24696,
0xCDB30AEB,0x532E3054,0x8FD948E4,0x6DBC3128,0x58EBF2EF,0x34C6FFEA,0xFE28ED61,0xEE7C3C73,
0x5D4A14D9,0xE864B7E3,0x42105D14,0x203E13E0,0x45EEE2B6,0xA3AAABEA,0xDB6C4F15,0xFACB4FD0,
0xC742F442,0xEF6ABBB5,0x654F3B1D,0x41CD2105,0xD81E799E,0x86854DC7,0xE44B476A,0x3D816250,
0xCF62A1F2,0x5B8D2646,0xFC8883A0,0xC1C7B6A3,0x7F1524C3,0x69CB7492,0x47848A0B,0x5692B285,
0x095BBF00,0xAD19489D,0x1462B174,0x23820E00,0x58428D2A,0x0C55F5EA,0x1DADF43E,0x233F7061,
0x3372F092,0x8D937E41,0xD65FECF1,0x6C223BDB,0x7CDE3759,0xCBEE7460,0x4085F2A7,0xCE77326E,
0xA6078084,0x19F8509E,0xE8EFD855,0x61D99735,0xA969A7AA,0xC50C06C2,0x5A04ABFC,0x800BCADC,
0x9E447A2E,0xC3453484,0xFDD56705,0x0E1E9EC9,0xDB73DBD3,0x105588CD,0x675FDA79,0xE3674340,
0xC5C43465,0x713E38D8,0x3D28F89E,0xF16DFF20,0x153E21E7,0x8FB03D4A,0xE6E39F2B,0xDB83ADF7
},{
0xE93D5A68,0x948140F7,0xF64C261C,0x94692934,0x411520F7,0x7602D4F7,0xBCF46B2E,0xD4A20068,
0xD4082471,0x3320F46A,0x43B7D4B7,0x500061AF,0x1E39F62E,0x97244546,0x14214F74,0xBF8B8840,
0x4D95FC1D,0x96B591AF,0x70F4DDD3,0x66A02F45,0xBFBC09EC,0x03BD9785,0x7FAC6DD0,0x31CB8504,
0x96EB27B3,0x55FD3941,0xDA2547E6,0xABCA0A9A,0x28507825,0x530429F4,0x0A2C86DA,0xE9B66DFB,
0x68DC1462,0xD7486900,0x680EC0A4,0x27A18DEE,0x4F3FFEA2,0xE887AD8C,0xB58CE006,0x7AF4D6B6,
0xAACE1E7C,0xD3375FEC,0xCE78A399,0x406B2A42,0x20FE9E35,0xD9F385B9,0xEE39D7AB,0x3B124E8B,
0x1DC9FAF7,0x4B6D1856,0x26A36631,0xEAE397B2,0x3A6EFA74,0xDD5B4332,0x6841E7F7,0xCA7820FB,
0xFB0AF54E,0xD8FEB397,0x454056AC,0xBA489527,0x55533A3A,0x20838D87,0xFE6BA9B7,0xD096954B,
0x55A867BC,0xA1159A58,0xCCA92963,0x99E1DB33,0xA62A4A56,0x3F3125F9,0x5EF47E1C,0x9029317C,
0xFDF8E802,0x04272F70,0x80BB155C,0x05282CE3,0x95C11548,0xE4C66D22,0x48C1133F,0xC70F86DC,
0x07F9C9EE,0x41041F0F,0x404779A4,0x5D886E17,0x325F51EB,0xD59BC0D1,0xF2BCC18F,0x41113564,
0x257B7834,0x602A9C60,0xDFF8E8A3,0x1F636C1B,0x0E12B4C2,0x02E1329E,0xAF664FD1,0xCAD18115,
0x6B2395E0,0x333E92E1,0x3B240B62,0xEEBEB922,0x85B2A20E,0xE6BA0D99,0xDE720C8C,0x2DA2F728,
0xD0127845,0x95B794FD,0x647D0862,0xE7CCF5F0,0x5449A36F,0x877D48FA,0xC39DFD27,0xF33E8D1E,
0x0A476341,0x992EFF74,0x3A6F6EAB,0xF4F8FD37,0xA812DC60,0xA1EBDDF8,0x991BE14C,0xDB6E6B0D,
0xC67B5510,0x6D672C37,0x2765D43B,0xDCD0E804,0xF1290DC7,0xCC00FFA3,0xB5390F92,0x690FED0B,
0x667B9FFB,0xCEDB7D9C,0xA091CF0B,0xD9155EA3,0xBB132F88,0x515BAD24,0x7B9479BF,0x763BD6EB,
0x37392EB3,0xCC115979,0x8026E297,0xF42E312D,0x6842ADA7,0xC66A2B3B,0x12754CCC,0x782EF11C,
0x6A124237,0xB79251E7,0x06A1BBE6,0x4BFB6350,0x1A6B1018,0x11CAEDFA,0x3D25BDD8,0xE2E1C3C9,
0x44421659,0x0A121386,0xD90CEC6E,0xD5ABEA2A,0x64AF674E,0xDA86A85F,0xBEBFE988,0x64E4C3FE,
0x9DBC8057,0xF0F7C086,0x60787BF8,0x6003604D,0xD1FD8346,0xF6381FB0,0x7745AE04,0xD736FCCC,
0x83426B33,0xF01EAB71,0xB0804187,0x3C005E5F,0x77A057BE,0xBDE8AE24,0x55464299,0xBF582E61,
0x4E58F48F,0xF2DDFDA2,0xF474EF38,0x8789BDC2,0x5366F9C3,0xC8B38E74,0xB475F255,0x46FCD9B9,
0x7AEB2661,0x8B1DDF84,0x846A0E79,0x915F95E2,0x466E598E,0x20B45770,0x8CD55591,0xC902DE4C,
0xB90BACE1,0xBB8205D0,0x11A86248,0x7574A99E,0xB77F19B6,0xE0A9DC09,0x662D09A1,0xC4324633,
0xE85A1F02,0x09F0BE8C,0x4A99A025,0x1D6EFE10,0x1AB93D1D,0x0BA5A4DF,0xA186F20F,0x2868F169,
0xDCB7DA83,0x573906FE,0xA1E2CE9B,0x4FCD7F52,0x50115E01,0xA70683FA,0xA002B5C4,0x0DE6D027,
0x9AF88C27,0x773F8641,0xC3604C06,0x61A806B5,0xF0177A28,0xC0F586E0,0x006058AA,0x30DC7D62,
0x11E69ED7,0x2338EA63,0x53C2DD94,0xC2C21634,0xBBCBEE56,0x90BCB6DE,0xEBFC7DA1,0xCE591D76,
0x6F05E409,0x4B7C0188,0x39720A3D,0x7C927C24,0x86E3725F,0x724D9DB9,0x1AC15BB4,0xD39EB8FC,
0xED545578,0x08FCA5B5,0xD83D7CD3,0x4DAD0FC4,0x1E50EF5E,0xB161E6F8,0xA28514D9,0x6C51133C,
0x6FD5C7E7,0x56E14EC4,0x362ABFCE,0xDDC6C837,0xD79A3234,0x92638212,0x670EFA8E,0x406000E0
},{
0x3A39CE37,0xD3FAF5CF,0xABC27737,0x5AC52D1B,0x5CB0679E,0x4FA33742,0xD3822740,0x99BC9BBE,
0xD5118E9D,0xBF0F7315,0xD62D1C7E,0xC700C47B,0xB78C1B6B,0x21A19045,0xB26EB1BE,0x6A366EB4,
0x5748AB2F,0xBC946E79,0xC6A376D2,0x6549C2C8,0x530FF8EE,0x468DDE7D,0xD5730A1D,0x4CD04DC6,
0x2939BBDB,0xA9BA4650,0xAC9526E8,0xBE5EE304,0xA1FAD5F0,0x6A2D519A,0x63EF8CE2,0x9A86EE22,
0xC089C2B8,0x43242EF6,0xA51E03AA,0x9CF2D0A4,0x83C061BA,0x9BE96A4D,0x8FE51550,0xBA645BD6,
0x2826A2F9,0xA73A3AE1,0x4BA99586,0xEF5562E9,0xC72FEFD3,0xF752F7DA,0x3F046F69,0x77FA0A59,
0x80E4A915,0x87B08601,0x9B09E6AD,0x3B3EE593,0xE990FD5A,0x9E34D797,0x2CF0B7D9,0x022B8B51,
0x96D5AC3A,0x017DA67D,0xD1CF3ED6,0x7C7D2D28,0x1F9F25CF,0xADF2B89B,0x5AD6B472,0x5A88F54C,
0xE029AC71,0xE019A5E6,0x47B0ACFD,0xED93FA9B,0xE8D3C48D,0x283B57CC,0xF8D56629,0x79132E28,
0x785F0191,0xED756055,0xF7960E44,0xE3D35E8C,0x15056DD4,0x88F46DBA,0x03A16125,0x0564F0BD,
0xC3EB9E15,0x3C9057A2,0x97271AEC,0xA93A072A,0x1B3F6D9B,0x1E6321F5,0xF59C66FB,0x26DCF319,
0x7533D928,0xB155FDF5,0x03563482,0x8ABA3CBB,0x28517711,0xC20AD9F8,0xABCC5167,0xCCAD925F,
0x4DE81751,0x3830DC8E,0x379D5862,0x9320F991,0xEA7A90C2,0xFB3E7BCE,0x5121CE64,0x774FBE32,
0xA8B6E37E,0xC3293D46,0x48DE5369,0x6413E680,0xA2AE0810,0xDD6DB224,0x69852DFD,0x09072166,
0xB39A460A,0x6445C0DD,0x586CDECF,0x1C20C8AE,0x5BBEF7DD,0x1B588D40,0xCCD2017F,0x6BB4E3BB,
0xDDA26A7E,0x3A59FF45,0x3E350A44,0xBCB4CDD5,0x72EACEA8,0xFA6484BB,0x8D6612AE,0xBF3C6F47,
0xD29BE463,0x542F5D9E,0xAEC2771B,0xF64E6370,0x740E0D8D,0xE75B1357,0xF8721671,0xAF537D5D,
0x4040CB08,0x4EB4E2CC,0x34D2466A,0x0115AF84,0xE1B00428,0x95983A1D,0x06B89FB4,0xCE6EA048,
0x6F3F3B82,0x3520AB82,0x011A1D4B,0x277227F8,0x611560B1,0xE7933FDC,0xBB3A792B,0x344525BD,
0xA08839E1,0x51CE794B,0x2F32C9B7,0xA01FBAC9,0xE01CC87E,0xBCC7D1F6,0xCF0111C3,0xA1E8AAC7,
0x1A908749,0xD44FBD9A,0xD0DADECB,0xD50ADA38,0x0339C32A,0xC6913667,0x8DF9317C,0xE0B12B4F,
0xF79E59B7,0x43F5BB3A,0xF2D519FF,0x27D9459C,0xBF97222C,0x15E6FC2A,0x0F91FC71,0x9B941525,
0xFAE59361,0xCEB69CEB,0xC2A86459,0x12BAA8D1,0xB6C1075E,0xE3056A0C,0x10D25065,0xCB03A442,
0xE0EC6E0E,0x1698DB3B,0x4C98A0BE,0x3278E964,0x9F1F9532,0xE0D392DF,0xD3A0342B,0x8971F21E,
0x1B0A7441,0x4BA3348C,0xC5BE7120,0xC37632D8,0xDF359F8D,0x9B992F2E,0xE60B6F47,0x0FE3F11D,
0xE54CDA54,0x1EDAD891,0xCE6279CF,0xCD3E7E6F,0x1618B166,0xFD2C1D05,0x848FD2C5,0xF6FB2299,
0xF523F357,0xA6327623,0x93A83531,0x56CCCD02,0xACF08162,0x5A75EBB5,0x6E163697,0x88D273CC,
0xDE966292,0x81B949D0,0x4C50901B,0x71C65614,0xE6C6C7BD,0x327A140A,0x45E1D006,0xC3F27B9A,
0xC9AA53FD,0x62A80F00,0xBB25BFE2,0x35BDD2F6,0x71126905,0xB2040222,0xB6CBCF7C,0xCD769C2B,
0x53113EC0,0x1640E3D3,0x38ABBD60,0x2547ADF0,0xBA38209C,0xF746CE76,0x77AFA1C5,0x20756060,
0x85CBFE4E,0x8AE88DD8,0x7AAAF9B0,0x4CF9AA7E,0x1948C25C,0x02FB8A8C,0x01C36AE4,0xD6EBE1F9,
0x90D4F869,0xA65CDEA0,0x3F09252D,0xC208E69F,0xB74E6132,0xCE77E25B,0x578FDFE3,0x3AC372E6
} };
/*********************** FUNCTION DEFINITIONS ***********************/
void blowfish_encrypt(const BYTE in[], BYTE out[], const BLOWFISH_KEY *keystruct)
{
WORD l,r,t; //,i;
l = (in[0] << 24) | (in[1] << 16) | (in[2] << 8) | (in[3]);
r = (in[4] << 24) | (in[5] << 16) | (in[6] << 8) | (in[7]);
ITERATION(l,r,t,0);
ITERATION(l,r,t,1);
ITERATION(l,r,t,2);
ITERATION(l,r,t,3);
ITERATION(l,r,t,4);
ITERATION(l,r,t,5);
ITERATION(l,r,t,6);
ITERATION(l,r,t,7);
ITERATION(l,r,t,8);
ITERATION(l,r,t,9);
ITERATION(l,r,t,10);
ITERATION(l,r,t,11);
ITERATION(l,r,t,12);
ITERATION(l,r,t,13);
ITERATION(l,r,t,14);
l ^= keystruct->p[15]; F(l,t); r^= t; //Last iteration has no swap()
r ^= keystruct->p[16];
l ^= keystruct->p[17];
out[0] = l >> 24;
out[1] = l >> 16;
out[2] = l >> 8;
out[3] = l;
out[4] = r >> 24;
out[5] = r >> 16;
out[6] = r >> 8;
out[7] = r;
}
void blowfish_decrypt(const BYTE in[], BYTE out[], const BLOWFISH_KEY *keystruct)
{
WORD l,r,t; //,i;
l = (in[0] << 24) | (in[1] << 16) | (in[2] << 8) | (in[3]);
r = (in[4] << 24) | (in[5] << 16) | (in[6] << 8) | (in[7]);
ITERATION(l,r,t,17);
ITERATION(l,r,t,16);
ITERATION(l,r,t,15);
ITERATION(l,r,t,14);
ITERATION(l,r,t,13);
ITERATION(l,r,t,12);
ITERATION(l,r,t,11);
ITERATION(l,r,t,10);
ITERATION(l,r,t,9);
ITERATION(l,r,t,8);
ITERATION(l,r,t,7);
ITERATION(l,r,t,6);
ITERATION(l,r,t,5);
ITERATION(l,r,t,4);
ITERATION(l,r,t,3);
l ^= keystruct->p[2]; F(l,t); r^= t; //Last iteration has no swap()
r ^= keystruct->p[1];
l ^= keystruct->p[0];
out[0] = l >> 24;
out[1] = l >> 16;
out[2] = l >> 8;
out[3] = l;
out[4] = r >> 24;
out[5] = r >> 16;
out[6] = r >> 8;
out[7] = r;
}
void blowfish_key_setup(const BYTE user_key[], BLOWFISH_KEY *keystruct, size_t len)
{
BYTE block[8];
int idx,idx2;
// Copy over the constant init array vals (so the originals aren't destroyed).
memcpy(keystruct->p,p_perm,sizeof(WORD) * 18);
memcpy(keystruct->s,s_perm,sizeof(WORD) * 1024);
// Combine the key with the P box. Assume key is standard 448 bits (56 bytes) or less.
for (idx = 0, idx2 = 0; idx < 18; ++idx, idx2 += 4)
keystruct->p[idx] ^= (user_key[idx2 % len] << 24) | (user_key[(idx2+1) % len] << 16)
| (user_key[(idx2+2) % len] << 8) | (user_key[(idx2+3) % len]);
// Re-calculate the P box.
memset(block, 0, 8);
for (idx = 0; idx < 18; idx += 2) {
blowfish_encrypt(block,block,keystruct);
keystruct->p[idx] = (block[0] << 24) | (block[1] << 16) | (block[2] << 8) | block[3];
keystruct->p[idx+1]=(block[4] << 24) | (block[5] << 16) | (block[6] << 8) | block[7];
}
// Recalculate the S-boxes.
for (idx = 0; idx < 4; ++idx) {
for (idx2 = 0; idx2 < 256; idx2 += 2) {
blowfish_encrypt(block,block,keystruct);
keystruct->s[idx][idx2] = (block[0] << 24) | (block[1] << 16) |
(block[2] << 8) | block[3];
keystruct->s[idx][idx2+1] = (block[4] << 24) | (block[5] << 16) |
(block[6] << 8) | block[7];
}
}
}

View File

@ -1,32 +0,0 @@
/*********************************************************************
* Filename: blowfish.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding Blowfish implementation.
*********************************************************************/
#ifndef BLOWFISH_H
#define BLOWFISH_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/****************************** MACROS ******************************/
#define BLOWFISH_BLOCK_SIZE 8 // Blowfish operates on 8 bytes at a time
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
typedef struct {
WORD p[18];
WORD s[4][256];
} BLOWFISH_KEY;
/*********************** FUNCTION DECLARATIONS **********************/
void blowfish_key_setup(const BYTE user_key[], BLOWFISH_KEY *keystruct, size_t len);
void blowfish_encrypt(const BYTE in[], BYTE out[], const BLOWFISH_KEY *keystruct);
void blowfish_decrypt(const BYTE in[], BYTE out[], const BLOWFISH_KEY *keystruct);
#endif // BLOWFISH_H

View File

@ -1,68 +0,0 @@
/*********************************************************************
* Filename: blowfish_test.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Performs known-answer tests on the corresponding Blowfish
implementation. These tests do not encompass the full
range of available test vectors, however, if the tests
pass it is very, very likely that the code is correct
and was compiled properly. This code also serves as
example usage of the functions.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdio.h>
#include <memory.h>
#include "blowfish.h"
/*********************** FUNCTION DEFINITIONS ***********************/
int blowfish_test()
{
BYTE key1[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
BYTE key2[8] = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
BYTE key3[24] = {0xF0,0xE1,0xD2,0xC3,0xB4,0xA5,0x96,0x87,
0x78,0x69,0x5A,0x4B,0x3C,0x2D,0x1E,0x0F,
0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77};
BYTE p1[BLOWFISH_BLOCK_SIZE] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
BYTE p2[BLOWFISH_BLOCK_SIZE] = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
BYTE p3[BLOWFISH_BLOCK_SIZE] = {0xFE,0xDC,0xBA,0x98,0x76,0x54,0x32,0x10};
BYTE c1[BLOWFISH_BLOCK_SIZE] = {0x4e,0xf9,0x97,0x45,0x61,0x98,0xdd,0x78};
BYTE c2[BLOWFISH_BLOCK_SIZE] = {0x51,0x86,0x6f,0xd5,0xb8,0x5e,0xcb,0x8a};
BYTE c3[BLOWFISH_BLOCK_SIZE] = {0x05,0x04,0x4b,0x62,0xfa,0x52,0xd0,0x80};
BYTE enc_buf[BLOWFISH_BLOCK_SIZE];
BLOWFISH_KEY key;
int pass = 1;
// Test vector 1.
blowfish_key_setup(key1, &key, BLOWFISH_BLOCK_SIZE);
blowfish_encrypt(p1, enc_buf, &key);
pass = pass && !memcmp(c1, enc_buf, BLOWFISH_BLOCK_SIZE);
blowfish_decrypt(c1, enc_buf, &key);
pass = pass && !memcmp(p1, enc_buf, BLOWFISH_BLOCK_SIZE);
// Test vector 2.
blowfish_key_setup(key2, &key, BLOWFISH_BLOCK_SIZE);
blowfish_encrypt(p2, enc_buf, &key);
pass = pass && !memcmp(c2, enc_buf, BLOWFISH_BLOCK_SIZE);
blowfish_decrypt(c2, enc_buf, &key);
pass = pass && !memcmp(p2, enc_buf, BLOWFISH_BLOCK_SIZE);
// Test vector 3.
blowfish_key_setup(key3, &key, 24);
blowfish_encrypt(p3, enc_buf, &key);
pass = pass && !memcmp(c3, enc_buf, BLOWFISH_BLOCK_SIZE);
blowfish_decrypt(c3, enc_buf, &key);
pass = pass && !memcmp(p3, enc_buf, BLOWFISH_BLOCK_SIZE);
return(pass);
}
int main()
{
printf("Blowfish tests: %s\n", blowfish_test() ? "SUCCEEDED" : "FAILED");
return(0);
}

View File

@ -1,269 +0,0 @@
/*********************************************************************
* Filename: des.c
* Author: Brad Conte (brad AT radconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the DES encryption algorithm.
Modes of operation (such as CBC) are not included.
The formal NIST algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "des.h"
/****************************** MACROS ******************************/
// Obtain bit "b" from the left and shift it "c" places from the right
#define BITNUM(a,b,c) (((a[(b)/8] >> (7 - (b%8))) & 0x01) << (c))
#define BITNUMINTR(a,b,c) ((((a) >> (31 - (b))) & 0x00000001) << (c))
#define BITNUMINTL(a,b,c) ((((a) << (b)) & 0x80000000) >> (c))
// This macro converts a 6 bit block with the S-Box row defined as the first and last
// bits to a 6 bit block with the row defined by the first two bits.
#define SBOXBIT(a) (((a) & 0x20) | (((a) & 0x1f) >> 1) | (((a) & 0x01) << 4))
/**************************** VARIABLES *****************************/
static const BYTE sbox1[64] = {
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
};
static const BYTE sbox2[64] = {
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
};
static const BYTE sbox3[64] = {
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
};
static const BYTE sbox4[64] = {
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
};
static const BYTE sbox5[64] = {
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
};
static const BYTE sbox6[64] = {
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
};
static const BYTE sbox7[64] = {
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
};
static const BYTE sbox8[64] = {
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
};
/*********************** FUNCTION DEFINITIONS ***********************/
// Initial (Inv)Permutation step
void IP(WORD state[], const BYTE in[])
{
state[0] = BITNUM(in,57,31) | BITNUM(in,49,30) | BITNUM(in,41,29) | BITNUM(in,33,28) |
BITNUM(in,25,27) | BITNUM(in,17,26) | BITNUM(in,9,25) | BITNUM(in,1,24) |
BITNUM(in,59,23) | BITNUM(in,51,22) | BITNUM(in,43,21) | BITNUM(in,35,20) |
BITNUM(in,27,19) | BITNUM(in,19,18) | BITNUM(in,11,17) | BITNUM(in,3,16) |
BITNUM(in,61,15) | BITNUM(in,53,14) | BITNUM(in,45,13) | BITNUM(in,37,12) |
BITNUM(in,29,11) | BITNUM(in,21,10) | BITNUM(in,13,9) | BITNUM(in,5,8) |
BITNUM(in,63,7) | BITNUM(in,55,6) | BITNUM(in,47,5) | BITNUM(in,39,4) |
BITNUM(in,31,3) | BITNUM(in,23,2) | BITNUM(in,15,1) | BITNUM(in,7,0);
state[1] = BITNUM(in,56,31) | BITNUM(in,48,30) | BITNUM(in,40,29) | BITNUM(in,32,28) |
BITNUM(in,24,27) | BITNUM(in,16,26) | BITNUM(in,8,25) | BITNUM(in,0,24) |
BITNUM(in,58,23) | BITNUM(in,50,22) | BITNUM(in,42,21) | BITNUM(in,34,20) |
BITNUM(in,26,19) | BITNUM(in,18,18) | BITNUM(in,10,17) | BITNUM(in,2,16) |
BITNUM(in,60,15) | BITNUM(in,52,14) | BITNUM(in,44,13) | BITNUM(in,36,12) |
BITNUM(in,28,11) | BITNUM(in,20,10) | BITNUM(in,12,9) | BITNUM(in,4,8) |
BITNUM(in,62,7) | BITNUM(in,54,6) | BITNUM(in,46,5) | BITNUM(in,38,4) |
BITNUM(in,30,3) | BITNUM(in,22,2) | BITNUM(in,14,1) | BITNUM(in,6,0);
}
void InvIP(WORD state[], BYTE in[])
{
in[0] = BITNUMINTR(state[1],7,7) | BITNUMINTR(state[0],7,6) | BITNUMINTR(state[1],15,5) |
BITNUMINTR(state[0],15,4) | BITNUMINTR(state[1],23,3) | BITNUMINTR(state[0],23,2) |
BITNUMINTR(state[1],31,1) | BITNUMINTR(state[0],31,0);
in[1] = BITNUMINTR(state[1],6,7) | BITNUMINTR(state[0],6,6) | BITNUMINTR(state[1],14,5) |
BITNUMINTR(state[0],14,4) | BITNUMINTR(state[1],22,3) | BITNUMINTR(state[0],22,2) |
BITNUMINTR(state[1],30,1) | BITNUMINTR(state[0],30,0);
in[2] = BITNUMINTR(state[1],5,7) | BITNUMINTR(state[0],5,6) | BITNUMINTR(state[1],13,5) |
BITNUMINTR(state[0],13,4) | BITNUMINTR(state[1],21,3) | BITNUMINTR(state[0],21,2) |
BITNUMINTR(state[1],29,1) | BITNUMINTR(state[0],29,0);
in[3] = BITNUMINTR(state[1],4,7) | BITNUMINTR(state[0],4,6) | BITNUMINTR(state[1],12,5) |
BITNUMINTR(state[0],12,4) | BITNUMINTR(state[1],20,3) | BITNUMINTR(state[0],20,2) |
BITNUMINTR(state[1],28,1) | BITNUMINTR(state[0],28,0);
in[4] = BITNUMINTR(state[1],3,7) | BITNUMINTR(state[0],3,6) | BITNUMINTR(state[1],11,5) |
BITNUMINTR(state[0],11,4) | BITNUMINTR(state[1],19,3) | BITNUMINTR(state[0],19,2) |
BITNUMINTR(state[1],27,1) | BITNUMINTR(state[0],27,0);
in[5] = BITNUMINTR(state[1],2,7) | BITNUMINTR(state[0],2,6) | BITNUMINTR(state[1],10,5) |
BITNUMINTR(state[0],10,4) | BITNUMINTR(state[1],18,3) | BITNUMINTR(state[0],18,2) |
BITNUMINTR(state[1],26,1) | BITNUMINTR(state[0],26,0);
in[6] = BITNUMINTR(state[1],1,7) | BITNUMINTR(state[0],1,6) | BITNUMINTR(state[1],9,5) |
BITNUMINTR(state[0],9,4) | BITNUMINTR(state[1],17,3) | BITNUMINTR(state[0],17,2) |
BITNUMINTR(state[1],25,1) | BITNUMINTR(state[0],25,0);
in[7] = BITNUMINTR(state[1],0,7) | BITNUMINTR(state[0],0,6) | BITNUMINTR(state[1],8,5) |
BITNUMINTR(state[0],8,4) | BITNUMINTR(state[1],16,3) | BITNUMINTR(state[0],16,2) |
BITNUMINTR(state[1],24,1) | BITNUMINTR(state[0],24,0);
}
WORD f(WORD state, const BYTE key[])
{
BYTE lrgstate[6]; //,i;
WORD t1,t2;
// Expantion Permutation
t1 = BITNUMINTL(state,31,0) | ((state & 0xf0000000) >> 1) | BITNUMINTL(state,4,5) |
BITNUMINTL(state,3,6) | ((state & 0x0f000000) >> 3) | BITNUMINTL(state,8,11) |
BITNUMINTL(state,7,12) | ((state & 0x00f00000) >> 5) | BITNUMINTL(state,12,17) |
BITNUMINTL(state,11,18) | ((state & 0x000f0000) >> 7) | BITNUMINTL(state,16,23);
t2 = BITNUMINTL(state,15,0) | ((state & 0x0000f000) << 15) | BITNUMINTL(state,20,5) |
BITNUMINTL(state,19,6) | ((state & 0x00000f00) << 13) | BITNUMINTL(state,24,11) |
BITNUMINTL(state,23,12) | ((state & 0x000000f0) << 11) | BITNUMINTL(state,28,17) |
BITNUMINTL(state,27,18) | ((state & 0x0000000f) << 9) | BITNUMINTL(state,0,23);
lrgstate[0] = (t1 >> 24) & 0x000000ff;
lrgstate[1] = (t1 >> 16) & 0x000000ff;
lrgstate[2] = (t1 >> 8) & 0x000000ff;
lrgstate[3] = (t2 >> 24) & 0x000000ff;
lrgstate[4] = (t2 >> 16) & 0x000000ff;
lrgstate[5] = (t2 >> 8) & 0x000000ff;
// Key XOR
lrgstate[0] ^= key[0];
lrgstate[1] ^= key[1];
lrgstate[2] ^= key[2];
lrgstate[3] ^= key[3];
lrgstate[4] ^= key[4];
lrgstate[5] ^= key[5];
// S-Box Permutation
state = (sbox1[SBOXBIT(lrgstate[0] >> 2)] << 28) |
(sbox2[SBOXBIT(((lrgstate[0] & 0x03) << 4) | (lrgstate[1] >> 4))] << 24) |
(sbox3[SBOXBIT(((lrgstate[1] & 0x0f) << 2) | (lrgstate[2] >> 6))] << 20) |
(sbox4[SBOXBIT(lrgstate[2] & 0x3f)] << 16) |
(sbox5[SBOXBIT(lrgstate[3] >> 2)] << 12) |
(sbox6[SBOXBIT(((lrgstate[3] & 0x03) << 4) | (lrgstate[4] >> 4))] << 8) |
(sbox7[SBOXBIT(((lrgstate[4] & 0x0f) << 2) | (lrgstate[5] >> 6))] << 4) |
sbox8[SBOXBIT(lrgstate[5] & 0x3f)];
// P-Box Permutation
state = BITNUMINTL(state,15,0) | BITNUMINTL(state,6,1) | BITNUMINTL(state,19,2) |
BITNUMINTL(state,20,3) | BITNUMINTL(state,28,4) | BITNUMINTL(state,11,5) |
BITNUMINTL(state,27,6) | BITNUMINTL(state,16,7) | BITNUMINTL(state,0,8) |
BITNUMINTL(state,14,9) | BITNUMINTL(state,22,10) | BITNUMINTL(state,25,11) |
BITNUMINTL(state,4,12) | BITNUMINTL(state,17,13) | BITNUMINTL(state,30,14) |
BITNUMINTL(state,9,15) | BITNUMINTL(state,1,16) | BITNUMINTL(state,7,17) |
BITNUMINTL(state,23,18) | BITNUMINTL(state,13,19) | BITNUMINTL(state,31,20) |
BITNUMINTL(state,26,21) | BITNUMINTL(state,2,22) | BITNUMINTL(state,8,23) |
BITNUMINTL(state,18,24) | BITNUMINTL(state,12,25) | BITNUMINTL(state,29,26) |
BITNUMINTL(state,5,27) | BITNUMINTL(state,21,28) | BITNUMINTL(state,10,29) |
BITNUMINTL(state,3,30) | BITNUMINTL(state,24,31);
// Return the final state value
return(state);
}
void des_key_setup(const BYTE key[], BYTE schedule[][6], DES_MODE mode)
{
WORD i, j, to_gen, C, D;
const WORD key_rnd_shift[16] = {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1};
const WORD key_perm_c[28] = {56,48,40,32,24,16,8,0,57,49,41,33,25,17,
9,1,58,50,42,34,26,18,10,2,59,51,43,35};
const WORD key_perm_d[28] = {62,54,46,38,30,22,14,6,61,53,45,37,29,21,
13,5,60,52,44,36,28,20,12,4,27,19,11,3};
const WORD key_compression[48] = {13,16,10,23,0,4,2,27,14,5,20,9,
22,18,11,3,25,7,15,6,26,19,12,1,
40,51,30,36,46,54,29,39,50,44,32,47,
43,48,38,55,33,52,45,41,49,35,28,31};
// Permutated Choice #1 (copy the key in, ignoring parity bits).
for (i = 0, j = 31, C = 0; i < 28; ++i, --j)
C |= BITNUM(key,key_perm_c[i],j);
for (i = 0, j = 31, D = 0; i < 28; ++i, --j)
D |= BITNUM(key,key_perm_d[i],j);
// Generate the 16 subkeys.
for (i = 0; i < 16; ++i) {
C = ((C << key_rnd_shift[i]) | (C >> (28-key_rnd_shift[i]))) & 0xfffffff0;
D = ((D << key_rnd_shift[i]) | (D >> (28-key_rnd_shift[i]))) & 0xfffffff0;
// Decryption subkeys are reverse order of encryption subkeys so
// generate them in reverse if the key schedule is for decryption useage.
if (mode == DES_DECRYPT)
to_gen = 15 - i;
else /*(if mode == DES_ENCRYPT)*/
to_gen = i;
// Initialize the array
for (j = 0; j < 6; ++j)
schedule[to_gen][j] = 0;
for (j = 0; j < 24; ++j)
schedule[to_gen][j/8] |= BITNUMINTR(C,key_compression[j],7 - (j%8));
for ( ; j < 48; ++j)
schedule[to_gen][j/8] |= BITNUMINTR(D,key_compression[j] - 28,7 - (j%8));
}
}
void des_crypt(const BYTE in[], BYTE out[], const BYTE key[][6])
{
WORD state[2],idx,t;
IP(state,in);
for (idx=0; idx < 15; ++idx) {
t = state[1];
state[1] = f(state[1],key[idx]) ^ state[0];
state[0] = t;
}
// Perform the final loop manually as it doesn't switch sides
state[0] = f(state[1],key[15]) ^ state[0];
InvIP(state,out);
}
void three_des_key_setup(const BYTE key[], BYTE schedule[][16][6], DES_MODE mode)
{
if (mode == DES_ENCRYPT) {
des_key_setup(&key[0],schedule[0],mode);
des_key_setup(&key[8],schedule[1],!mode);
des_key_setup(&key[16],schedule[2],mode);
}
else /*if (mode == DES_DECRYPT*/ {
des_key_setup(&key[16],schedule[0],mode);
des_key_setup(&key[8],schedule[1],!mode);
des_key_setup(&key[0],schedule[2],mode);
}
}
void three_des_crypt(const BYTE in[], BYTE out[], const BYTE key[][16][6])
{
des_crypt(in,out,key[0]);
des_crypt(out,out,key[1]);
des_crypt(out,out,key[2]);
}

View File

@ -1,37 +0,0 @@
/*********************************************************************
* Filename: des.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding DES implementation.
Note that encryption and decryption are defined by how
the key setup is performed, the actual en/de-cryption is
performed by the same function.
*********************************************************************/
#ifndef DES_H
#define DESH
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/****************************** MACROS ******************************/
#define DES_BLOCK_SIZE 8 // DES operates on 8 bytes at a time
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
typedef enum {
DES_ENCRYPT,
DES_DECRYPT
} DES_MODE;
/*********************** FUNCTION DECLARATIONS **********************/
void des_key_setup(const BYTE key[], BYTE schedule[][6], DES_MODE mode);
void des_crypt(const BYTE in[], BYTE out[], const BYTE key[][6]);
void three_des_key_setup(const BYTE key[], BYTE schedule[][16][6], DES_MODE mode);
void three_des_crypt(const BYTE in[], BYTE out[], const BYTE key[][16][6]);
#endif // DES_H

View File

@ -1,83 +0,0 @@
/*********************************************************************
* Filename: des_test.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Performs known-answer tests on the corresponding DES
implementation. These tests do not encompass the full
range of available test vectors, however, if the tests
pass it is very, very likely that the code is correct
and was compiled properly. This code also serves as
example usage of the functions.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdio.h>
#include <memory.h>
#include "des.h"
/*********************** FUNCTION DEFINITIONS ***********************/
int des_test()
{
BYTE pt1[DES_BLOCK_SIZE] = {0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xE7};
BYTE pt2[DES_BLOCK_SIZE] = {0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF};
BYTE pt3[DES_BLOCK_SIZE] = {0x54,0x68,0x65,0x20,0x71,0x75,0x66,0x63};
BYTE ct1[DES_BLOCK_SIZE] = {0xc9,0x57,0x44,0x25,0x6a,0x5e,0xd3,0x1d};
BYTE ct2[DES_BLOCK_SIZE] = {0x85,0xe8,0x13,0x54,0x0f,0x0a,0xb4,0x05};
BYTE ct3[DES_BLOCK_SIZE] = {0xc9,0x57,0x44,0x25,0x6a,0x5e,0xd3,0x1d};
BYTE ct4[DES_BLOCK_SIZE] = {0xA8,0x26,0xFD,0x8C,0xE5,0x3B,0x85,0x5F};
BYTE key1[DES_BLOCK_SIZE] = {0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF};
BYTE key2[DES_BLOCK_SIZE] = {0x13,0x34,0x57,0x79,0x9B,0xBC,0xDF,0xF1};
BYTE three_key1[DES_BLOCK_SIZE * 3] = {0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF};
BYTE three_key2[DES_BLOCK_SIZE * 3] = {0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0x01,
0x45,0x67,0x89,0xAB,0xCD,0xEF,0x01,0x23};
BYTE schedule[16][6];
BYTE three_schedule[3][16][6];
BYTE buf[DES_BLOCK_SIZE];
int pass = 1;
des_key_setup(key1, schedule, DES_ENCRYPT);
des_crypt(pt1, buf, schedule);
pass = pass && !memcmp(ct1, buf, DES_BLOCK_SIZE);
des_key_setup(key1, schedule, DES_DECRYPT);
des_crypt(ct1, buf, schedule);
pass = pass && !memcmp(pt1, buf, DES_BLOCK_SIZE);
des_key_setup(key2, schedule, DES_ENCRYPT);
des_crypt(pt2, buf, schedule);
pass = pass && !memcmp(ct2, buf, DES_BLOCK_SIZE);
des_key_setup(key2, schedule, DES_DECRYPT);
des_crypt(ct2, buf, schedule);
pass = pass && !memcmp(pt2, buf, DES_BLOCK_SIZE);
three_des_key_setup(three_key1, three_schedule, DES_ENCRYPT);
three_des_crypt(pt1, buf, three_schedule);
pass = pass && !memcmp(ct3, buf, DES_BLOCK_SIZE);
three_des_key_setup(three_key1, three_schedule, DES_DECRYPT);
three_des_crypt(ct3, buf, three_schedule);
pass = pass && !memcmp(pt1, buf, DES_BLOCK_SIZE);
three_des_key_setup(three_key2, three_schedule, DES_ENCRYPT);
three_des_crypt(pt3, buf, three_schedule);
pass = pass && !memcmp(ct4, buf, DES_BLOCK_SIZE);
three_des_key_setup(three_key2, three_schedule, DES_DECRYPT);
three_des_crypt(ct4, buf, three_schedule);
pass = pass && !memcmp(pt3, buf, DES_BLOCK_SIZE);
return(pass);
}
int main()
{
printf("DES test: %s\n", des_test() ? "SUCCEEDED" : "FAILED");
return(0);
}

View File

@ -1,104 +0,0 @@
/*********************************************************************
* Filename: md2.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the MD2 hashing algorithm.
Algorithm specification can be found here:
* http://tools.ietf.org/html/rfc1319 .
Input is little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "md2.h"
/**************************** VARIABLES *****************************/
static const BYTE s[256] = {
41, 46, 67, 201, 162, 216, 124, 1, 61, 54, 84, 161, 236, 240, 6,
19, 98, 167, 5, 243, 192, 199, 115, 140, 152, 147, 43, 217, 188,
76, 130, 202, 30, 155, 87, 60, 253, 212, 224, 22, 103, 66, 111, 24,
138, 23, 229, 18, 190, 78, 196, 214, 218, 158, 222, 73, 160, 251,
245, 142, 187, 47, 238, 122, 169, 104, 121, 145, 21, 178, 7, 63,
148, 194, 16, 137, 11, 34, 95, 33, 128, 127, 93, 154, 90, 144, 50,
39, 53, 62, 204, 231, 191, 247, 151, 3, 255, 25, 48, 179, 72, 165,
181, 209, 215, 94, 146, 42, 172, 86, 170, 198, 79, 184, 56, 210,
150, 164, 125, 182, 118, 252, 107, 226, 156, 116, 4, 241, 69, 157,
112, 89, 100, 113, 135, 32, 134, 91, 207, 101, 230, 45, 168, 2, 27,
96, 37, 173, 174, 176, 185, 246, 28, 70, 97, 105, 52, 64, 126, 15,
85, 71, 163, 35, 221, 81, 175, 58, 195, 92, 249, 206, 186, 197,
234, 38, 44, 83, 13, 110, 133, 40, 132, 9, 211, 223, 205, 244, 65,
129, 77, 82, 106, 220, 55, 200, 108, 193, 171, 250, 36, 225, 123,
8, 12, 189, 177, 74, 120, 136, 149, 139, 227, 99, 232, 109, 233,
203, 213, 254, 59, 0, 29, 57, 242, 239, 183, 14, 102, 88, 208, 228,
166, 119, 114, 248, 235, 117, 75, 10, 49, 68, 80, 180, 143, 237,
31, 26, 219, 153, 141, 51, 159, 17, 131, 20
};
/*********************** FUNCTION DEFINITIONS ***********************/
void md2_transform(MD2_CTX *ctx, BYTE data[])
{
int j,k,t;
//memcpy(&ctx->state[16], data);
for (j=0; j < 16; ++j) {
ctx->state[j + 16] = data[j];
ctx->state[j + 32] = (ctx->state[j+16] ^ ctx->state[j]);
}
t = 0;
for (j = 0; j < 18; ++j) {
for (k = 0; k < 48; ++k) {
ctx->state[k] ^= s[t];
t = ctx->state[k];
}
t = (t+j) & 0xFF;
}
t = ctx->checksum[15];
for (j=0; j < 16; ++j) {
ctx->checksum[j] ^= s[data[j] ^ t];
t = ctx->checksum[j];
}
}
void md2_init(MD2_CTX *ctx)
{
int i;
for (i=0; i < 48; ++i)
ctx->state[i] = 0;
for (i=0; i < 16; ++i)
ctx->checksum[i] = 0;
ctx->len = 0;
}
void md2_update(MD2_CTX *ctx, const BYTE data[], size_t len)
{
size_t i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->len] = data[i];
ctx->len++;
if (ctx->len == MD2_BLOCK_SIZE) {
md2_transform(ctx, ctx->data);
ctx->len = 0;
}
}
}
void md2_final(MD2_CTX *ctx, BYTE hash[])
{
int to_pad;
to_pad = MD2_BLOCK_SIZE - ctx->len;
while (ctx->len < MD2_BLOCK_SIZE)
ctx->data[ctx->len++] = to_pad;
md2_transform(ctx, ctx->data);
md2_transform(ctx, ctx->checksum);
memcpy(hash, ctx->state, MD2_BLOCK_SIZE);
}

View File

@ -1,33 +0,0 @@
/*********************************************************************
* Filename: md2.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding MD2 implementation.
*********************************************************************/
#ifndef MD2_H
#define MD2_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/****************************** MACROS ******************************/
#define MD2_BLOCK_SIZE 16
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
typedef struct {
BYTE data[16];
BYTE state[48];
BYTE checksum[16];
int len;
} MD2_CTX;
/*********************** FUNCTION DECLARATIONS **********************/
void md2_init(MD2_CTX *ctx);
void md2_update(MD2_CTX *ctx, const BYTE data[], size_t len);
void md2_final(MD2_CTX *ctx, BYTE hash[]); // size of hash must be MD2_BLOCK_SIZE
#endif // MD2_H

View File

@ -1,58 +0,0 @@
/*********************************************************************
* Filename: md2_test.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Performs known-answer tests on the corresponding MD2
implementation. These tests do not encompass the full
range of available test vectors, however, if the tests
pass it is very, very likely that the code is correct
and was compiled properly. This code also serves as
example usage of the functions.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdio.h>
#include <string.h>
#include <memory.h>
#include "md2.h"
/*********************** FUNCTION DEFINITIONS ***********************/
int md2_test()
{
BYTE text1[] = {"abc"};
BYTE text2[] = {"abcdefghijklmnopqrstuvwxyz"};
BYTE text3_1[] = {"ABCDEFGHIJKLMNOPQRSTUVWXYZabcde"};
BYTE text3_2[] = {"fghijklmnopqrstuvwxyz0123456789"};
BYTE hash1[MD2_BLOCK_SIZE] = {0xda,0x85,0x3b,0x0d,0x3f,0x88,0xd9,0x9b,0x30,0x28,0x3a,0x69,0xe6,0xde,0xd6,0xbb};
BYTE hash2[MD2_BLOCK_SIZE] = {0x4e,0x8d,0xdf,0xf3,0x65,0x02,0x92,0xab,0x5a,0x41,0x08,0xc3,0xaa,0x47,0x94,0x0b};
BYTE hash3[MD2_BLOCK_SIZE] = {0xda,0x33,0xde,0xf2,0xa4,0x2d,0xf1,0x39,0x75,0x35,0x28,0x46,0xc3,0x03,0x38,0xcd};
BYTE buf[16];
MD2_CTX ctx;
int pass = 1;
md2_init(&ctx);
md2_update(&ctx, text1, strlen(text1));
md2_final(&ctx, buf);
pass = pass && !memcmp(hash1, buf, MD2_BLOCK_SIZE);
// Note that the MD2 object can be re-used.
md2_init(&ctx);
md2_update(&ctx, text2, strlen(text2));
md2_final(&ctx, buf);
pass = pass && !memcmp(hash2, buf, MD2_BLOCK_SIZE);
// Note that the data is added in two chunks.
md2_init(&ctx);
md2_update(&ctx, text3_1, strlen(text3_1));
md2_update(&ctx, text3_2, strlen(text3_2));
md2_final(&ctx, buf);
pass = pass && !memcmp(hash3, buf, MD2_BLOCK_SIZE);
return(pass);
}
int main()
{
printf("MD2 tests: %s\n", md2_test() ? "SUCCEEDED" : "FAILED");
}

View File

@ -1,189 +0,0 @@
/*********************************************************************
* Filename: md5.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the MD5 hashing algorithm.
Algorithm specification can be found here:
* http://tools.ietf.org/html/rfc1321
This implementation uses little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "md5.h"
/****************************** MACROS ******************************/
#define ROTLEFT(a,b) ((a << b) | (a >> (32-b)))
#define F(x,y,z) ((x & y) | (~x & z))
#define G(x,y,z) ((x & z) | (y & ~z))
#define H(x,y,z) (x ^ y ^ z)
#define I(x,y,z) (y ^ (x | ~z))
#define FF(a,b,c,d,m,s,t) { a += F(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
#define GG(a,b,c,d,m,s,t) { a += G(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
#define HH(a,b,c,d,m,s,t) { a += H(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
#define II(a,b,c,d,m,s,t) { a += I(b,c,d) + m + t; \
a = b + ROTLEFT(a,s); }
/*********************** FUNCTION DEFINITIONS ***********************/
void md5_transform(MD5_CTX *ctx, const BYTE data[])
{
WORD a, b, c, d, m[16], i, j;
// MD5 specifies big endian byte order, but this implementation assumes a little
// endian byte order CPU. Reverse all the bytes upon input, and re-reverse them
// on output (in md5_final()).
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j]) + (data[j + 1] << 8) + (data[j + 2] << 16) + (data[j + 3] << 24);
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
FF(a,b,c,d,m[0], 7,0xd76aa478);
FF(d,a,b,c,m[1], 12,0xe8c7b756);
FF(c,d,a,b,m[2], 17,0x242070db);
FF(b,c,d,a,m[3], 22,0xc1bdceee);
FF(a,b,c,d,m[4], 7,0xf57c0faf);
FF(d,a,b,c,m[5], 12,0x4787c62a);
FF(c,d,a,b,m[6], 17,0xa8304613);
FF(b,c,d,a,m[7], 22,0xfd469501);
FF(a,b,c,d,m[8], 7,0x698098d8);
FF(d,a,b,c,m[9], 12,0x8b44f7af);
FF(c,d,a,b,m[10],17,0xffff5bb1);
FF(b,c,d,a,m[11],22,0x895cd7be);
FF(a,b,c,d,m[12], 7,0x6b901122);
FF(d,a,b,c,m[13],12,0xfd987193);
FF(c,d,a,b,m[14],17,0xa679438e);
FF(b,c,d,a,m[15],22,0x49b40821);
GG(a,b,c,d,m[1], 5,0xf61e2562);
GG(d,a,b,c,m[6], 9,0xc040b340);
GG(c,d,a,b,m[11],14,0x265e5a51);
GG(b,c,d,a,m[0], 20,0xe9b6c7aa);
GG(a,b,c,d,m[5], 5,0xd62f105d);
GG(d,a,b,c,m[10], 9,0x02441453);
GG(c,d,a,b,m[15],14,0xd8a1e681);
GG(b,c,d,a,m[4], 20,0xe7d3fbc8);
GG(a,b,c,d,m[9], 5,0x21e1cde6);
GG(d,a,b,c,m[14], 9,0xc33707d6);
GG(c,d,a,b,m[3], 14,0xf4d50d87);
GG(b,c,d,a,m[8], 20,0x455a14ed);
GG(a,b,c,d,m[13], 5,0xa9e3e905);
GG(d,a,b,c,m[2], 9,0xfcefa3f8);
GG(c,d,a,b,m[7], 14,0x676f02d9);
GG(b,c,d,a,m[12],20,0x8d2a4c8a);
HH(a,b,c,d,m[5], 4,0xfffa3942);
HH(d,a,b,c,m[8], 11,0x8771f681);
HH(c,d,a,b,m[11],16,0x6d9d6122);
HH(b,c,d,a,m[14],23,0xfde5380c);
HH(a,b,c,d,m[1], 4,0xa4beea44);
HH(d,a,b,c,m[4], 11,0x4bdecfa9);
HH(c,d,a,b,m[7], 16,0xf6bb4b60);
HH(b,c,d,a,m[10],23,0xbebfbc70);
HH(a,b,c,d,m[13], 4,0x289b7ec6);
HH(d,a,b,c,m[0], 11,0xeaa127fa);
HH(c,d,a,b,m[3], 16,0xd4ef3085);
HH(b,c,d,a,m[6], 23,0x04881d05);
HH(a,b,c,d,m[9], 4,0xd9d4d039);
HH(d,a,b,c,m[12],11,0xe6db99e5);
HH(c,d,a,b,m[15],16,0x1fa27cf8);
HH(b,c,d,a,m[2], 23,0xc4ac5665);
II(a,b,c,d,m[0], 6,0xf4292244);
II(d,a,b,c,m[7], 10,0x432aff97);
II(c,d,a,b,m[14],15,0xab9423a7);
II(b,c,d,a,m[5], 21,0xfc93a039);
II(a,b,c,d,m[12], 6,0x655b59c3);
II(d,a,b,c,m[3], 10,0x8f0ccc92);
II(c,d,a,b,m[10],15,0xffeff47d);
II(b,c,d,a,m[1], 21,0x85845dd1);
II(a,b,c,d,m[8], 6,0x6fa87e4f);
II(d,a,b,c,m[15],10,0xfe2ce6e0);
II(c,d,a,b,m[6], 15,0xa3014314);
II(b,c,d,a,m[13],21,0x4e0811a1);
II(a,b,c,d,m[4], 6,0xf7537e82);
II(d,a,b,c,m[11],10,0xbd3af235);
II(c,d,a,b,m[2], 15,0x2ad7d2bb);
II(b,c,d,a,m[9], 21,0xeb86d391);
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
}
void md5_init(MD5_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
}
void md5_update(MD5_CTX *ctx, const BYTE data[], size_t len)
{
size_t i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
md5_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void md5_final(MD5_CTX *ctx, BYTE hash[])
{
size_t i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else if (ctx->datalen >= 56) {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
md5_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[56] = ctx->bitlen;
ctx->data[57] = ctx->bitlen >> 8;
ctx->data[58] = ctx->bitlen >> 16;
ctx->data[59] = ctx->bitlen >> 24;
ctx->data[60] = ctx->bitlen >> 32;
ctx->data[61] = ctx->bitlen >> 40;
ctx->data[62] = ctx->bitlen >> 48;
ctx->data[63] = ctx->bitlen >> 56;
md5_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and MD uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (i * 8)) & 0x000000ff;
}
}

View File

@ -1,34 +0,0 @@
/*********************************************************************
* Filename: md5.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding MD5 implementation.
*********************************************************************/
#ifndef MD5_H
#define MD5_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/****************************** MACROS ******************************/
#define MD5_BLOCK_SIZE 16 // MD5 outputs a 16 byte digest
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
typedef struct {
BYTE data[64];
WORD datalen;
unsigned long long bitlen;
WORD state[4];
} MD5_CTX;
/*********************** FUNCTION DECLARATIONS **********************/
void md5_init(MD5_CTX *ctx);
void md5_update(MD5_CTX *ctx, const BYTE data[], size_t len);
void md5_final(MD5_CTX *ctx, BYTE hash[]);
#endif // MD5_H

View File

@ -1,60 +0,0 @@
/*********************************************************************
* Filename: md5_test.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Performs known-answer tests on the corresponding MD5
implementation. These tests do not encompass the full
range of available test vectors, however, if the tests
pass it is very, very likely that the code is correct
and was compiled properly. This code also serves as
example usage of the functions.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdio.h>
#include <memory.h>
#include <string.h>
#include "md5.h"
/*********************** FUNCTION DEFINITIONS ***********************/
int md5_test()
{
BYTE text1[] = {""};
BYTE text2[] = {"abc"};
BYTE text3_1[] = {"ABCDEFGHIJKLMNOPQRSTUVWXYZabcde"};
BYTE text3_2[] = {"fghijklmnopqrstuvwxyz0123456789"};
BYTE hash1[MD5_BLOCK_SIZE] = {0xd4,0x1d,0x8c,0xd9,0x8f,0x00,0xb2,0x04,0xe9,0x80,0x09,0x98,0xec,0xf8,0x42,0x7e};
BYTE hash2[MD5_BLOCK_SIZE] = {0x90,0x01,0x50,0x98,0x3c,0xd2,0x4f,0xb0,0xd6,0x96,0x3f,0x7d,0x28,0xe1,0x7f,0x72};
BYTE hash3[MD5_BLOCK_SIZE] = {0xd1,0x74,0xab,0x98,0xd2,0x77,0xd9,0xf5,0xa5,0x61,0x1c,0x2c,0x9f,0x41,0x9d,0x9f};
BYTE buf[16];
MD5_CTX ctx;
int pass = 1;
md5_init(&ctx);
md5_update(&ctx, text1, strlen(text1));
md5_final(&ctx, buf);
pass = pass && !memcmp(hash1, buf, MD5_BLOCK_SIZE);
// Note the MD5 object can be reused.
md5_init(&ctx);
md5_update(&ctx, text2, strlen(text2));
md5_final(&ctx, buf);
pass = pass && !memcmp(hash2, buf, MD5_BLOCK_SIZE);
// Note the data is being added in two chunks.
md5_init(&ctx);
md5_update(&ctx, text3_1, strlen(text3_1));
md5_update(&ctx, text3_2, strlen(text3_2));
md5_final(&ctx, buf);
pass = pass && !memcmp(hash3, buf, MD5_BLOCK_SIZE);
return(pass);
}
int main()
{
printf("MD5 tests: %s\n", md5_test() ? "SUCCEEDED" : "FAILED");
return(0);
}

View File

@ -1,35 +0,0 @@
/*********************************************************************
* Filename: rot-13.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the ROT-13 encryption algorithm.
Algorithm specification can be found here:
*
This implementation uses little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <string.h>
#include "rot-13.h"
/*********************** FUNCTION DEFINITIONS ***********************/
void rot13(char str[])
{
int case_type, idx, len;
for (idx = 0, len = strlen(str); idx < len; idx++) {
// Only process alphabetic characters.
if (str[idx] < 'A' || (str[idx] > 'Z' && str[idx] < 'a') || str[idx] > 'z')
continue;
// Determine if the char is upper or lower case.
if (str[idx] >= 'a')
case_type = 'a';
else
case_type = 'A';
// Rotate the char's value, ensuring it doesn't accidentally "fall off" the end.
str[idx] = (str[idx] + 13) % (case_type + 26);
if (str[idx] < 26)
str[idx] += case_type;
}
}

View File

@ -1,20 +0,0 @@
/*********************************************************************
* Filename: rot-13.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding ROT-13 implementation.
*********************************************************************/
#ifndef ROT13_H
#define ROT13_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/*********************** FUNCTION DECLARATIONS **********************/
// Performs IN PLACE rotation of the input. Assumes input is NULL terminated.
// Preserves each charcter's case. Ignores non alphabetic characters.
void rot13(char str[]);
#endif // ROT13_H

View File

@ -1,44 +0,0 @@
/*********************************************************************
* Filename: rot-13_test.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Performs known-answer tests on the corresponding ROT-13
implementation. These tests do not encompass the full
range of available test vectors, however, if the tests
pass it is very, very likely that the code is correct
and was compiled properly. This code also serves as
example usage of the functions.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdio.h>
#include <string.h>
#include "rot-13.h"
/*********************** FUNCTION DEFINITIONS ***********************/
int rot13_test()
{
char text[] = {"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"};
char code[] = {"NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklm"};
char buf[1024];
int pass = 1;
// To encode, just apply ROT-13.
strcpy(buf, text);
rot13(buf);
pass = pass && !strcmp(code, buf);
// To decode, just re-apply ROT-13.
rot13(buf);
pass = pass && !strcmp(text, buf);
return(pass);
}
int main()
{
printf("ROT-13 tests: %s\n", rot13_test() ? "SUCCEEDED" : "FAILED");
return(0);
}

View File

@ -1,149 +0,0 @@
/*********************************************************************
* Filename: sha1.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the SHA1 hashing algorithm.
Algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
This implementation uses little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "sha1.h"
/****************************** MACROS ******************************/
#define ROTLEFT(a, b) ((a << b) | (a >> (32 - b)))
/*********************** FUNCTION DEFINITIONS ***********************/
void sha1_transform(SHA1_CTX *ctx, const BYTE data[])
{
WORD a, b, c, d, e, i, j, t, m[80];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) + (data[j + 1] << 16) + (data[j + 2] << 8) + (data[j + 3]);
for ( ; i < 80; ++i) {
m[i] = (m[i - 3] ^ m[i - 8] ^ m[i - 14] ^ m[i - 16]);
m[i] = (m[i] << 1) | (m[i] >> 31);
}
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
for (i = 0; i < 20; ++i) {
t = ROTLEFT(a, 5) + ((b & c) ^ (~b & d)) + e + ctx->k[0] + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
for ( ; i < 40; ++i) {
t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[1] + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
for ( ; i < 60; ++i) {
t = ROTLEFT(a, 5) + ((b & c) ^ (b & d) ^ (c & d)) + e + ctx->k[2] + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
for ( ; i < 80; ++i) {
t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[3] + m[i];
e = d;
d = c;
c = ROTLEFT(b, 30);
b = a;
a = t;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
}
void sha1_init(SHA1_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xc3d2e1f0;
ctx->k[0] = 0x5a827999;
ctx->k[1] = 0x6ed9eba1;
ctx->k[2] = 0x8f1bbcdc;
ctx->k[3] = 0xca62c1d6;
}
void sha1_update(SHA1_CTX *ctx, const BYTE data[], size_t len)
{
size_t i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha1_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void sha1_final(SHA1_CTX *ctx, BYTE hash[])
{
WORD i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha1_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha1_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and MD uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
}
}

View File

@ -1,35 +0,0 @@
/*********************************************************************
* Filename: sha1.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding SHA1 implementation.
*********************************************************************/
#ifndef SHA1_H
#define SHA1_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/****************************** MACROS ******************************/
#define SHA1_BLOCK_SIZE 20 // SHA1 outputs a 20 byte digest
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
typedef struct {
BYTE data[64];
WORD datalen;
unsigned long long bitlen;
WORD state[5];
WORD k[4];
} SHA1_CTX;
/*********************** FUNCTION DECLARATIONS **********************/
void sha1_init(SHA1_CTX *ctx);
void sha1_update(SHA1_CTX *ctx, const BYTE data[], size_t len);
void sha1_final(SHA1_CTX *ctx, BYTE hash[]);
#endif // SHA1_H

View File

@ -1,58 +0,0 @@
/*********************************************************************
* Filename: sha1_test.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Performs known-answer tests on the corresponding SHA1
implementation. These tests do not encompass the full
range of available test vectors, however, if the tests
pass it is very, very likely that the code is correct
and was compiled properly. This code also serves as
example usage of the functions.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdio.h>
#include <memory.h>
#include <string.h>
#include "sha1.h"
/*********************** FUNCTION DEFINITIONS ***********************/
int sha1_test()
{
BYTE text1[] = {"abc"};
BYTE text2[] = {"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"};
BYTE text3[] = {"aaaaaaaaaa"};
BYTE hash1[SHA1_BLOCK_SIZE] = {0xa9,0x99,0x3e,0x36,0x47,0x06,0x81,0x6a,0xba,0x3e,0x25,0x71,0x78,0x50,0xc2,0x6c,0x9c,0xd0,0xd8,0x9d};
BYTE hash2[SHA1_BLOCK_SIZE] = {0x84,0x98,0x3e,0x44,0x1c,0x3b,0xd2,0x6e,0xba,0xae,0x4a,0xa1,0xf9,0x51,0x29,0xe5,0xe5,0x46,0x70,0xf1};
BYTE hash3[SHA1_BLOCK_SIZE] = {0x34,0xaa,0x97,0x3c,0xd4,0xc4,0xda,0xa4,0xf6,0x1e,0xeb,0x2b,0xdb,0xad,0x27,0x31,0x65,0x34,0x01,0x6f};
BYTE buf[SHA1_BLOCK_SIZE];
int idx;
SHA1_CTX ctx;
int pass = 1;
sha1_init(&ctx);
sha1_update(&ctx, text1, strlen(text1));
sha1_final(&ctx, buf);
pass = pass && !memcmp(hash1, buf, SHA1_BLOCK_SIZE);
sha1_init(&ctx);
sha1_update(&ctx, text2, strlen(text2));
sha1_final(&ctx, buf);
pass = pass && !memcmp(hash2, buf, SHA1_BLOCK_SIZE);
sha1_init(&ctx);
for (idx = 0; idx < 100000; ++idx)
sha1_update(&ctx, text3, strlen(text3));
sha1_final(&ctx, buf);
pass = pass && !memcmp(hash3, buf, SHA1_BLOCK_SIZE);
return(pass);
}
int main()
{
printf("SHA1 tests: %s\n", sha1_test() ? "SUCCEEDED" : "FAILED");
return(0);
}

View File

@ -1,159 +0,0 @@
/*********************************************************************
* Filename: sha256.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the SHA-256 hashing algorithm.
SHA-256 is one of the three algorithms in the SHA2
specification. The others, SHA-384 and SHA-512, are not
offered in this implementation.
Algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
This implementation uses little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include <string.h>
#include "sha256.h"
/****************************** MACROS ******************************/
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
/**************************** VARIABLES *****************************/
static const WORD k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
/*********************** FUNCTION DEFINITIONS ***********************/
void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
{
WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
void sha256_init(SHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
{
WORD i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void sha256_final(SHA256_CTX *ctx, BYTE hash[])
{
WORD i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha256_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha256_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}

View File

@ -1,34 +0,0 @@
/*********************************************************************
* Filename: sha256.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding SHA1 implementation.
*********************************************************************/
#ifndef SHA256_H
#define SHA256_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
/****************************** MACROS ******************************/
#define SHA256_BLOCK_SIZE 32 // SHA256 outputs a 32 byte digest
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
typedef struct {
BYTE data[64];
WORD datalen;
unsigned long long bitlen;
WORD state[8];
} SHA256_CTX;
/*********************** FUNCTION DECLARATIONS **********************/
void sha256_init(SHA256_CTX *ctx);
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len);
void sha256_final(SHA256_CTX *ctx, BYTE hash[]);
#endif // SHA256_H

View File

@ -1,61 +0,0 @@
/*********************************************************************
* Filename: sha256.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Performs known-answer tests on the corresponding SHA1
implementation. These tests do not encompass the full
range of available test vectors, however, if the tests
pass it is very, very likely that the code is correct
and was compiled properly. This code also serves as
example usage of the functions.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdio.h>
#include <memory.h>
#include <string.h>
#include "sha256.h"
/*********************** FUNCTION DEFINITIONS ***********************/
int sha256_test()
{
BYTE text1[] = {"abc"};
BYTE text2[] = {"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"};
BYTE text3[] = {"aaaaaaaaaa"};
BYTE hash1[SHA256_BLOCK_SIZE] = {0xba,0x78,0x16,0xbf,0x8f,0x01,0xcf,0xea,0x41,0x41,0x40,0xde,0x5d,0xae,0x22,0x23,
0xb0,0x03,0x61,0xa3,0x96,0x17,0x7a,0x9c,0xb4,0x10,0xff,0x61,0xf2,0x00,0x15,0xad};
BYTE hash2[SHA256_BLOCK_SIZE] = {0x24,0x8d,0x6a,0x61,0xd2,0x06,0x38,0xb8,0xe5,0xc0,0x26,0x93,0x0c,0x3e,0x60,0x39,
0xa3,0x3c,0xe4,0x59,0x64,0xff,0x21,0x67,0xf6,0xec,0xed,0xd4,0x19,0xdb,0x06,0xc1};
BYTE hash3[SHA256_BLOCK_SIZE] = {0xcd,0xc7,0x6e,0x5c,0x99,0x14,0xfb,0x92,0x81,0xa1,0xc7,0xe2,0x84,0xd7,0x3e,0x67,
0xf1,0x80,0x9a,0x48,0xa4,0x97,0x20,0x0e,0x04,0x6d,0x39,0xcc,0xc7,0x11,0x2c,0xd0};
BYTE buf[SHA256_BLOCK_SIZE];
SHA256_CTX ctx;
int idx;
int pass = 1;
sha256_init(&ctx);
sha256_update(&ctx, text1, strlen(text1));
sha256_final(&ctx, buf);
pass = pass && !memcmp(hash1, buf, SHA256_BLOCK_SIZE);
sha256_init(&ctx);
sha256_update(&ctx, text2, strlen(text2));
sha256_final(&ctx, buf);
pass = pass && !memcmp(hash2, buf, SHA256_BLOCK_SIZE);
sha256_init(&ctx);
for (idx = 0; idx < 100000; ++idx)
sha256_update(&ctx, text3, strlen(text3));
sha256_final(&ctx, buf);
pass = pass && !memcmp(hash3, buf, SHA256_BLOCK_SIZE);
return(pass);
}
int main()
{
printf("SHA-256 tests: %s\n", sha256_test() ? "SUCCEEDED" : "FAILEd");
return(0);
}

View File

@ -1,18 +0,0 @@
/* header file for the curve25519-donna implementation, because the
* authors of that project don't supply one.
*/
#ifndef CURVE25519_DONNA_H
#define CURVE25519_DONNA_H
#ifdef __cplusplus
extern "C" {
#endif
extern int curve25519_donna(unsigned char *output, const unsigned char *a,
const unsigned char *b);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,12 +0,0 @@
/curve25519-donna-c64.a
/curve25519-donna.a
/test-curve25519-donna
/speed-curve25519-donna
/test-curve25519-donna-c64
/speed-curve25519-donna-c64
/test-sc-curve25519-donna-c64
/build
*.o
*.pyc
/dist
/MANIFEST

View File

@ -1,46 +0,0 @@
Copyright 2008, Google Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
curve25519-donna: Curve25519 elliptic curve, public key function
http://code.google.com/p/curve25519-donna/
Adam Langley <agl@imperialviolet.org>
Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
More information about curve25519 can be found here
http://cr.yp.to/ecdh.html
djb's sample implementation of curve25519 is written in a special assembly
language called qhasm and uses the floating point registers.
This is, almost, a clean room reimplementation from the curve25519 paper. It
uses many of the tricks described therein. Only the crecip function is taken
from the sample implementation.

View File

@ -1,56 +0,0 @@
CFLAGS=-Wmissing-prototypes -Wdeclaration-after-statement -O2 -Wall
CFLAGS_32=-m32
targets: curve25519-donna.a curve25519-donna-c64.a
test: test-donna test-donna-c64
clean:
rm -f *.o *.a *.pp test-curve25519-donna test-curve25519-donna-c64 speed-curve25519-donna speed-curve25519-donna-c64 test-noncanon-curve25519-donna test-noncanon-curve25519-donna-c64
curve25519-donna.a: curve25519-donna.o
ar -rc curve25519-donna.a curve25519-donna.o
ranlib curve25519-donna.a
curve25519-donna.o: curve25519-donna.c
gcc -c curve25519-donna.c $(CFLAGS) $(CFLAGS_32)
curve25519-donna-c64.a: curve25519-donna-c64.o
ar -rc curve25519-donna-c64.a curve25519-donna-c64.o
ranlib curve25519-donna-c64.a
curve25519-donna-c64.o: curve25519-donna-c64.c
gcc -c curve25519-donna-c64.c $(CFLAGS)
test-donna: test-curve25519-donna
./test-curve25519-donna | head -123456 | tail -1
test-donna-c64: test-curve25519-donna-c64
./test-curve25519-donna-c64 | head -123456 | tail -1
test-curve25519-donna: test-curve25519.c curve25519-donna.a
gcc -o test-curve25519-donna test-curve25519.c curve25519-donna.a $(CFLAGS) $(CFLAGS_32)
test-curve25519-donna-c64: test-curve25519.c curve25519-donna-c64.a
gcc -o test-curve25519-donna-c64 test-curve25519.c curve25519-donna-c64.a $(CFLAGS)
speed-curve25519-donna: speed-curve25519.c curve25519-donna.a
gcc -o speed-curve25519-donna speed-curve25519.c curve25519-donna.a $(CFLAGS) $(CFLAGS_32)
speed-curve25519-donna-c64: speed-curve25519.c curve25519-donna-c64.a
gcc -o speed-curve25519-donna-c64 speed-curve25519.c curve25519-donna-c64.a $(CFLAGS)
test-sc-curve25519-donna-c64: test-sc-curve25519.c curve25519-donna-c64.a
gcc -o test-sc-curve25519-donna-c64 -O test-sc-curve25519.c curve25519-donna-c64.a test-sc-curve25519.s $(CFLAGS)
test-noncanon-donna: test-noncanon-curve25519-donna
./test-noncanon-curve25519-donna
test-noncanon-donna-c64: test-noncanon-curve25519-donna-c64
./test-noncanon-curve25519-donna-c64
test-noncanon-curve25519-donna: test-noncanon.c curve25519-donna.a
gcc -o test-noncanon-curve25519-donna test-noncanon.c curve25519-donna.a $(CFLAGS) $(CFLAGS_32)
test-noncanon-curve25519-donna-c64: test-noncanon.c curve25519-donna-c64.a
gcc -o test-noncanon-curve25519-donna-c64 test-noncanon.c curve25519-donna-c64.a $(CFLAGS)

View File

@ -1,40 +0,0 @@
See http://code.google.com/p/curve25519-donna/ for details.
BUILDING:
If you run `make`, two .a archives will be built, similar to djb's curve25519
code. Alternatively, read on:
The C implementation is contained within curve25519-donna.c. It has no external
dependancies and is BSD licenced. You can copy/include/link it directly in with
your program. Recommended C flags: -O2
The x86-64 bit implementation is contained within curve25519-donna-x86-64.c and
curve25519-donna-x86-64.s. Build like this:
% cpp curve25519-donna-x86-64.s > curve25519-donna-x86-64.s.pp
% as -o curve25519-donna-x86-64.s.o curve25519-donna-x86-64.s.pp
% gcc -O2 -c curve25519-donna-x86-64.c
Then the two .o files can be linked in
USAGE:
The usage is exactly the same as djb's code (as described at
http://cr.yp.to/ecdh.html) expect that the function is called curve25519_donna.
In short,
To generate a private key just generate 32 random bytes.
To generate the public key, just do:
static const uint8_t basepoint[32] = {9};
curve25519_donna(mypublic, mysecret, basepoint);
To generate an agreed key do:
uint8_t shared_key[32];
curve25519_donna(shared_key, mysecret, theirpublic);
And hash the shared_key with a cryptographic hash function before using.

View File

@ -1,118 +0,0 @@
/*
James Robson
Public domain.
*/
#include "Curve25519Donna.h"
#include <stdio.h>
#include <stdlib.h>
extern void curve25519_donna(unsigned char *output, const unsigned char *a,
const unsigned char *b);
unsigned char*
as_unsigned_char_array(JNIEnv* env, jbyteArray array, int* len);
jbyteArray as_byte_array(JNIEnv* env, unsigned char* buf, int len);
jbyteArray as_byte_array(JNIEnv* env, unsigned char* buf, int len) {
jbyteArray array = (*env)->NewByteArray(env, len);
(*env)->SetByteArrayRegion(env, array, 0, len, (jbyte*)buf);
//int i;
//for (i = 0;i < len;++i) printf("%02x",(unsigned int) buf[i]); printf(" ");
//printf("\n");
return array;
}
unsigned char*
as_unsigned_char_array(JNIEnv* env, jbyteArray array, int* len) {
*len = (*env)->GetArrayLength(env, array);
unsigned char* buf = (unsigned char*)calloc(*len+1, sizeof(char));
(*env)->GetByteArrayRegion (env, array, 0, *len, (jbyte*)buf);
return buf;
}
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_curve25519Donna
(JNIEnv *env, jobject obj, jbyteArray a, jbyteArray b) {
unsigned char o[32] = {0};
int l1, l2;
unsigned char* a1 = as_unsigned_char_array(env, a, &l1);
unsigned char* b1 = as_unsigned_char_array(env, b, &l2);
if ( !(l1 == 32 && l2 == 32) ) {
fprintf(stderr, "Error, must be length 32");
return NULL;
}
curve25519_donna(o, (const unsigned char*)a1, (const unsigned char*)b1);
free(a1);
free(b1);
return as_byte_array(env, (unsigned char*)o, 32);
}
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_makePrivate
(JNIEnv *env, jobject obj, jbyteArray secret) {
int len;
unsigned char* k = as_unsigned_char_array(env, secret, &len);
if (len != 32) {
fprintf(stderr, "Error, must be length 32");
return NULL;
}
k[0] &= 248;
k[31] &= 127;
k[31] |= 64;
return as_byte_array(env, k, 32);
}
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_getPublic
(JNIEnv *env, jobject obj, jbyteArray privkey) {
int len;
unsigned char* private = as_unsigned_char_array(env, privkey, &len);
if (len != 32) {
fprintf(stderr, "Error, must be length 32");
return NULL;
}
unsigned char pubkey[32];
unsigned char basepoint[32] = {9};
curve25519_donna(pubkey, private, basepoint);
return as_byte_array(env, (unsigned char*)pubkey, 32);
}
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_makeSharedSecret
(JNIEnv *env, jobject obj, jbyteArray privkey, jbyteArray their_pubkey) {
unsigned char shared_secret[32];
int l1, l2;
unsigned char* private = as_unsigned_char_array(env, privkey, &l1);
unsigned char* pubkey = as_unsigned_char_array(env, their_pubkey, &l2);
if ( !(l1 == 32 && l2 == 32) ) {
fprintf(stderr, "Error, must be length 32");
return NULL;
}
curve25519_donna(shared_secret, private, pubkey);
return as_byte_array(env, (unsigned char*)shared_secret, 32);
}
JNIEXPORT void JNICALL Java_Curve25519Donna_helowrld
(JNIEnv *env, jobject obj) {
printf("helowrld\n");
}

View File

@ -1,53 +0,0 @@
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class Curve25519Donna */
#ifndef _Included_Curve25519Donna
#define _Included_Curve25519Donna
#ifdef __cplusplus
extern "C" {
#endif
/*
* Class: Curve25519Donna
* Method: curve25519Donna
* Signature: ([B[B)[B
*/
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_curve25519Donna
(JNIEnv *, jobject, jbyteArray, jbyteArray);
/*
* Class: Curve25519Donna
* Method: makePrivate
* Signature: ([B)[B
*/
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_makePrivate
(JNIEnv *, jobject, jbyteArray);
/*
* Class: Curve25519Donna
* Method: getPublic
* Signature: ([B)[B
*/
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_getPublic
(JNIEnv *, jobject, jbyteArray);
/*
* Class: Curve25519Donna
* Method: makeSharedSecret
* Signature: ([B[B)[B
*/
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_makeSharedSecret
(JNIEnv *, jobject, jbyteArray, jbyteArray);
/*
* Class: Curve25519Donna
* Method: helowrld
* Signature: ()V
*/
JNIEXPORT void JNICALL Java_Curve25519Donna_helowrld
(JNIEnv *, jobject);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,77 +0,0 @@
/*
James Robson
Public domain.
*/
public class Curve25519Donna {
final protected static char[] hexArray = "0123456789ABCDEF".toCharArray();
public static String bytesToHex(byte[] bytes) {
char[] hexChars = new char[bytes.length * 2];
int v;
for ( int j = 0; j < bytes.length; j++ ) {
v = bytes[j] & 0xFF;
hexChars[j * 2] = hexArray[v >>> 4];
hexChars[j * 2 + 1] = hexArray[v & 0x0F];
}
return new String(hexChars);
}
public native byte[] curve25519Donna(byte[] a, byte[] b);
public native byte[] makePrivate(byte[] secret);
public native byte[] getPublic(byte[] privkey);
public native byte[] makeSharedSecret(byte[] privkey, byte[] theirPubKey);
public native void helowrld();
// Uncomment if your Java is 32-bit:
//static { System.loadLibrary("Curve25519Donna"); }
// Otherwise, load this 64-bit .jnilib:
static { System.loadLibrary("Curve25519Donna_64"); }
/*
To give the old tires a kick (OSX):
java -cp `pwd` Curve25519Donna
*/
public static void main (String[] args) {
Curve25519Donna c = new Curve25519Donna();
// These should be 32 bytes long
byte[] user1Secret = "abcdefghijklmnopqrstuvwxyz123456".getBytes();
byte[] user2Secret = "654321zyxwvutsrqponmlkjihgfedcba".getBytes();
// You can use the curve function directly...
//byte[] o = c.curve25519Donna(a, b);
//System.out.println("o = " + bytesToHex(o));
// ... but it's not really necessary. Just use the following
// convenience methods:
byte[] privKey = c.makePrivate(user1Secret);
byte[] pubKey = c.getPublic(privKey);
byte[] privKey2 = c.makePrivate(user2Secret);
byte[] pubKey2 = c.getPublic(privKey2);
System.out.println("'user1' privKey = " + bytesToHex(privKey));
System.out.println("'user1' pubKey = " + bytesToHex(pubKey));
System.out.println("===================================================");
System.out.println("'user2' privKey = " + bytesToHex(privKey2));
System.out.println("'user2' pubKey = " + bytesToHex(pubKey2));
System.out.println("===================================================");
byte[] ss1 = c.makeSharedSecret(privKey, pubKey2);
System.out.println("'user1' computes shared secret: " + bytesToHex(ss1));
byte[] ss2 = c.makeSharedSecret(privKey2, pubKey);
System.out.println("'user2' computes shared secret: " + bytesToHex(ss2));
}
}

View File

@ -1,68 +0,0 @@
CFLAGS=-Wmissing-prototypes -Wdeclaration-after-statement -O2 -Wall
CC=clang
targets: curve25519-donna.a curve25519-donna-c64.a
test: test-donna test-donna-c64
clean:
rm -f java-src/*.class java-src/*.jnilib *.dylib *.o *.a *.pp test-curve25519-donna test-curve25519-donna-c64 speed-curve25519-donna speed-curve25519-donna-c64
curve25519-donna.a: curve25519-donna.o
ar -rc curve25519-donna.a curve25519-donna.o
ranlib curve25519-donna.a
##### OSX dynamic library (32- & 64-bit)
curve25519donna.dylib: curve25519-donna.a curve25519-donna-c64.a
$(CC) -m32 -fpic -shared -Wl,-all_load curve25519-donna.a -Wl,-all_load -o libcurve25519donna.dylib
$(CC) -fpic -shared -Wl,-all_load curve25519-donna-c64.a -Wl,-all_load -o libcurve25519donna_64.dylib
##### OSX/Java section hence
# Java JNI - compiled for OSX (32- & 64-bit)
Curve25519Donna.class:
cd java-src; javah -jni Curve25519Donna; cd ..
cd java-src; javac Curve25519Donna.java; cd ..
Curve25519Donna.jnilib: curve25519-donna.a curve25519-donna-c64.a Curve25519Donna.class
@echo "Building 32-bit..."
clang -o java-src/libCurve25519Donna.jnilib $(CFLAGS) -lc -shared -m32 -I /System/Library/Frameworks/JavaVM.framework/Headers curve25519-donna.o java-src/Curve25519Donna.c
@echo "Building 64-bit..."
clang -o java-src/libCurve25519Donna_64.jnilib $(CFLAGS) -lc -shared -I /System/Library/Frameworks/JavaVM.framework/Headers curve25519-donna-c64.o java-src/Curve25519Donna.c
##### OSX/Java section end
curve25519-donna.o: curve25519-donna.c
$(CC) -c curve25519-donna.c $(CFLAGS) -m32
curve25519-donna-c64.a: curve25519-donna-c64.o
ar -rc curve25519-donna-c64.a curve25519-donna-c64.o
ranlib curve25519-donna-c64.a
curve25519-donna-c64.o: curve25519-donna-c64.c
$(CC) -c curve25519-donna-c64.c $(CFLAGS)
test-donna: test-curve25519-donna
./test-curve25519-donna | head -123456 | tail -1
test-donna-c64: test-curve25519-donna-c64
./test-curve25519-donna-c64 | head -123456 | tail -1
test-curve25519-donna: test-curve25519.c curve25519-donna.a
$(CC) -o test-curve25519-donna test-curve25519.c curve25519-donna.a $(CFLAGS) -m32
test-curve25519-donna-c64: test-curve25519.c curve25519-donna-c64.a
$(CC) -o test-curve25519-donna-c64 test-curve25519.c curve25519-donna-c64.a $(CFLAGS)
speed-curve25519-donna: speed-curve25519.c curve25519-donna.a
$(CC) -o speed-curve25519-donna speed-curve25519.c curve25519-donna.a $(CFLAGS) -m32
speed-curve25519-donna-c64: speed-curve25519.c curve25519-donna-c64.a
$(CC) -o speed-curve25519-donna-c64 speed-curve25519.c curve25519-donna-c64.a $(CFLAGS)
test-sc-curve25519-donna-c64: test-sc-curve25519.c curve25519-donna-c64.a
$(CC) -o test-sc-curve25519-donna-c64 -O test-sc-curve25519.c curve25519-donna-c64.a test-sc-curve25519.s $(CFLAGS)

View File

@ -1,449 +0,0 @@
/* Copyright 2008, Google Inc.
* All rights reserved.
*
* Code released into the public domain.
*
* curve25519-donna: Curve25519 elliptic curve, public key function
*
* http://code.google.com/p/curve25519-donna/
*
* Adam Langley <agl@imperialviolet.org>
*
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
*
* More information about curve25519 can be found here
* http://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation.
*/
#include <string.h>
#include <stdint.h>
typedef uint8_t u8;
typedef uint64_t limb;
typedef limb felem[5];
// This is a special gcc mode for 128-bit integers. It's implemented on 64-bit
// platforms only as far as I know.
typedef unsigned uint128_t __attribute__((mode(TI)));
#undef force_inline
#define force_inline __attribute__((always_inline))
/* Sum two numbers: output += in */
static inline void force_inline
fsum(limb *output, const limb *in) {
output[0] += in[0];
output[1] += in[1];
output[2] += in[2];
output[3] += in[3];
output[4] += in[4];
}
/* Find the difference of two numbers: output = in - output
* (note the order of the arguments!)
*
* Assumes that out[i] < 2**52
* On return, out[i] < 2**55
*/
static inline void force_inline
fdifference_backwards(felem out, const felem in) {
/* 152 is 19 << 3 */
static const limb two54m152 = (((limb)1) << 54) - 152;
static const limb two54m8 = (((limb)1) << 54) - 8;
out[0] = in[0] + two54m152 - out[0];
out[1] = in[1] + two54m8 - out[1];
out[2] = in[2] + two54m8 - out[2];
out[3] = in[3] + two54m8 - out[3];
out[4] = in[4] + two54m8 - out[4];
}
/* Multiply a number by a scalar: output = in * scalar */
static inline void force_inline
fscalar_product(felem output, const felem in, const limb scalar) {
uint128_t a;
a = ((uint128_t) in[0]) * scalar;
output[0] = ((limb)a) & 0x7ffffffffffff;
a = ((uint128_t) in[1]) * scalar + ((limb) (a >> 51));
output[1] = ((limb)a) & 0x7ffffffffffff;
a = ((uint128_t) in[2]) * scalar + ((limb) (a >> 51));
output[2] = ((limb)a) & 0x7ffffffffffff;
a = ((uint128_t) in[3]) * scalar + ((limb) (a >> 51));
output[3] = ((limb)a) & 0x7ffffffffffff;
a = ((uint128_t) in[4]) * scalar + ((limb) (a >> 51));
output[4] = ((limb)a) & 0x7ffffffffffff;
output[0] += (a >> 51) * 19;
}
/* Multiply two numbers: output = in2 * in
*
* output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*
* Assumes that in[i] < 2**55 and likewise for in2.
* On return, output[i] < 2**52
*/
static inline void force_inline
fmul(felem output, const felem in2, const felem in) {
uint128_t t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
r0 = in[0];
r1 = in[1];
r2 = in[2];
r3 = in[3];
r4 = in[4];
s0 = in2[0];
s1 = in2[1];
s2 = in2[2];
s3 = in2[3];
s4 = in2[4];
t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
r4 *= 19;
r1 *= 19;
r2 *= 19;
r3 *= 19;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
t[3] += ((uint128_t) r4) * s4;
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;
output[0] = r0;
output[1] = r1;
output[2] = r2;
output[3] = r3;
output[4] = r4;
}
static inline void force_inline
fsquare_times(felem output, const felem in, limb count) {
uint128_t t[5];
limb r0,r1,r2,r3,r4,c;
limb d0,d1,d2,d4,d419;
r0 = in[0];
r1 = in[1];
r2 = in[2];
r3 = in[3];
r4 = in[4];
do {
d0 = r0 * 2;
d1 = r1 * 2;
d2 = r2 * 2 * 19;
d419 = r4 * 19;
d4 = d419 * 2;
t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1 + (((uint128_t) d2) * (r3 ));
t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2 + (((uint128_t) r3) * (r3 * 19));
t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1 + (((uint128_t) d4) * (r3 ));
t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2 + (((uint128_t) r4) * (d419 ));
t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3 + (((uint128_t) r2) * (r2 ));
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;
} while(--count);
output[0] = r0;
output[1] = r1;
output[2] = r2;
output[3] = r3;
output[4] = r4;
}
/* Load a little-endian 64-bit number */
static limb
load_limb(const u8 *in) {
return
((limb)in[0]) |
(((limb)in[1]) << 8) |
(((limb)in[2]) << 16) |
(((limb)in[3]) << 24) |
(((limb)in[4]) << 32) |
(((limb)in[5]) << 40) |
(((limb)in[6]) << 48) |
(((limb)in[7]) << 56);
}
static void
store_limb(u8 *out, limb in) {
out[0] = in & 0xff;
out[1] = (in >> 8) & 0xff;
out[2] = (in >> 16) & 0xff;
out[3] = (in >> 24) & 0xff;
out[4] = (in >> 32) & 0xff;
out[5] = (in >> 40) & 0xff;
out[6] = (in >> 48) & 0xff;
out[7] = (in >> 56) & 0xff;
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
static void
fexpand(limb *output, const u8 *in) {
output[0] = load_limb(in) & 0x7ffffffffffff;
output[1] = (load_limb(in+6) >> 3) & 0x7ffffffffffff;
output[2] = (load_limb(in+12) >> 6) & 0x7ffffffffffff;
output[3] = (load_limb(in+19) >> 1) & 0x7ffffffffffff;
output[4] = (load_limb(in+24) >> 12) & 0x7ffffffffffff;
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array
*/
static void
fcontract(u8 *output, const felem input) {
uint128_t t[5];
t[0] = input[0];
t[1] = input[1];
t[2] = input[2];
t[3] = input[3];
t[4] = input[4];
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
/* now t is between 0 and 2^255-1, properly carried. */
/* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
t[0] += 19;
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
/* now between 19 and 2^255-1 in both cases, and offset by 19. */
t[0] += 0x8000000000000 - 19;
t[1] += 0x8000000000000 - 1;
t[2] += 0x8000000000000 - 1;
t[3] += 0x8000000000000 - 1;
t[4] += 0x8000000000000 - 1;
/* now between 2^255 and 2^256-20, and offset by 2^255. */
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
t[4] &= 0x7ffffffffffff;
store_limb(output, t[0] | (t[1] << 51));
store_limb(output+8, (t[1] >> 13) | (t[2] << 38));
store_limb(output+16, (t[2] >> 26) | (t[3] << 25));
store_limb(output+24, (t[3] >> 39) | (t[4] << 12));
}
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z3: long form
* x3 z3: long form
* x z: short form, destroyed
* xprime zprime: short form, destroyed
* qmqp: short form, preserved
*/
static void
fmonty(limb *x2, limb *z2, /* output 2Q */
limb *x3, limb *z3, /* output Q + Q' */
limb *x, limb *z, /* input Q */
limb *xprime, limb *zprime, /* input Q' */
const limb *qmqp /* input Q - Q' */) {
limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5],
zzprime[5], zzzprime[5];
memcpy(origx, x, 5 * sizeof(limb));
fsum(x, z);
fdifference_backwards(z, origx); // does x - z
memcpy(origxprime, xprime, sizeof(limb) * 5);
fsum(xprime, zprime);
fdifference_backwards(zprime, origxprime);
fmul(xxprime, xprime, z);
fmul(zzprime, x, zprime);
memcpy(origxprime, xxprime, sizeof(limb) * 5);
fsum(xxprime, zzprime);
fdifference_backwards(zzprime, origxprime);
fsquare_times(x3, xxprime, 1);
fsquare_times(zzzprime, zzprime, 1);
fmul(z3, zzzprime, qmqp);
fsquare_times(xx, x, 1);
fsquare_times(zz, z, 1);
fmul(x2, xx, zz);
fdifference_backwards(zz, xx); // does zz = xx - zz
fscalar_product(zzz, zz, 121665);
fsum(zzz, xx);
fmul(z2, zz, zzz);
}
// -----------------------------------------------------------------------------
// Maybe swap the contents of two limb arrays (@a and @b), each @len elements
// long. Perform the swap iff @swap is non-zero.
//
// This function performs the swap without leaking any side-channel
// information.
// -----------------------------------------------------------------------------
static void
swap_conditional(limb a[5], limb b[5], limb iswap) {
unsigned i;
const limb swap = -iswap;
for (i = 0; i < 5; ++i) {
const limb x = swap & (a[i] ^ b[i]);
a[i] ^= x;
b[i] ^= x;
}
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form)
*/
static void
cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
limb a[5] = {0}, b[5] = {1}, c[5] = {1}, d[5] = {0};
limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
limb e[5] = {0}, f[5] = {1}, g[5] = {0}, h[5] = {1};
limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
unsigned i, j;
memcpy(nqpqx, q, sizeof(limb) * 5);
for (i = 0; i < 32; ++i) {
u8 byte = n[31 - i];
for (j = 0; j < 8; ++j) {
const limb bit = byte >> 7;
swap_conditional(nqx, nqpqx, bit);
swap_conditional(nqz, nqpqz, bit);
fmonty(nqx2, nqz2,
nqpqx2, nqpqz2,
nqx, nqz,
nqpqx, nqpqz,
q);
swap_conditional(nqx2, nqpqx2, bit);
swap_conditional(nqz2, nqpqz2, bit);
t = nqx;
nqx = nqx2;
nqx2 = t;
t = nqz;
nqz = nqz2;
nqz2 = t;
t = nqpqx;
nqpqx = nqpqx2;
nqpqx2 = t;
t = nqpqz;
nqpqz = nqpqz2;
nqpqz2 = t;
byte <<= 1;
}
}
memcpy(resultx, nqx, sizeof(limb) * 5);
memcpy(resultz, nqz, sizeof(limb) * 5);
}
// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code, tightened a little
// -----------------------------------------------------------------------------
static void
crecip(felem out, const felem z) {
felem a,t0,b,c;
/* 2 */ fsquare_times(a, z, 1); // a = 2
/* 8 */ fsquare_times(t0, a, 2);
/* 9 */ fmul(b, t0, z); // b = 9
/* 11 */ fmul(a, b, a); // a = 11
/* 22 */ fsquare_times(t0, a, 1);
/* 2^5 - 2^0 = 31 */ fmul(b, t0, b);
/* 2^10 - 2^5 */ fsquare_times(t0, b, 5);
/* 2^10 - 2^0 */ fmul(b, t0, b);
/* 2^20 - 2^10 */ fsquare_times(t0, b, 10);
/* 2^20 - 2^0 */ fmul(c, t0, b);
/* 2^40 - 2^20 */ fsquare_times(t0, c, 20);
/* 2^40 - 2^0 */ fmul(t0, t0, c);
/* 2^50 - 2^10 */ fsquare_times(t0, t0, 10);
/* 2^50 - 2^0 */ fmul(b, t0, b);
/* 2^100 - 2^50 */ fsquare_times(t0, b, 50);
/* 2^100 - 2^0 */ fmul(c, t0, b);
/* 2^200 - 2^100 */ fsquare_times(t0, c, 100);
/* 2^200 - 2^0 */ fmul(t0, t0, c);
/* 2^250 - 2^50 */ fsquare_times(t0, t0, 50);
/* 2^250 - 2^0 */ fmul(t0, t0, b);
/* 2^255 - 2^5 */ fsquare_times(t0, t0, 5);
/* 2^255 - 21 */ fmul(out, t0, a);
}
int curve25519_donna(u8 *, const u8 *, const u8 *);
int
curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
limb bp[5], x[5], z[5], zmone[5];
uint8_t e[32];
int i;
for (i = 0;i < 32;++i) e[i] = secret[i];
e[0] &= 248;
e[31] &= 127;
e[31] |= 64;
fexpand(bp, basepoint);
cmult(x, z, e, bp);
crecip(zmone, z);
fmul(z, x, zmone);
fcontract(mypublic, z);
return 0;
}

View File

@ -1,860 +0,0 @@
/* Copyright 2008, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* curve25519-donna: Curve25519 elliptic curve, public key function
*
* http://code.google.com/p/curve25519-donna/
*
* Adam Langley <agl@imperialviolet.org>
*
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
*
* More information about curve25519 can be found here
* http://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation. */
#include <string.h>
#include <stdint.h>
#ifdef _MSC_VER
#define inline __inline
#endif
typedef uint8_t u8;
typedef int32_t s32;
typedef int64_t limb;
/* Field element representation:
*
* Field elements are written as an array of signed, 64-bit limbs, least
* significant first. The value of the field element is:
* x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
*
* i.e. the limbs are 26, 25, 26, 25, ... bits wide. */
/* Sum two numbers: output += in */
static void fsum(limb *output, const limb *in) {
unsigned i;
for (i = 0; i < 10; i += 2) {
output[0+i] = output[0+i] + in[0+i];
output[1+i] = output[1+i] + in[1+i];
}
}
/* Find the difference of two numbers: output = in - output
* (note the order of the arguments!). */
static void fdifference(limb *output, const limb *in) {
unsigned i;
for (i = 0; i < 10; ++i) {
output[i] = in[i] - output[i];
}
}
/* Multiply a number by a scalar: output = in * scalar */
static void fscalar_product(limb *output, const limb *in, const limb scalar) {
unsigned i;
for (i = 0; i < 10; ++i) {
output[i] = in[i] * scalar;
}
}
/* Multiply two numbers: output = in2 * in
*
* output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs. */
static void fproduct(limb *output, const limb *in2, const limb *in) {
output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
((limb) ((s32) in2[1])) * ((s32) in[0]);
output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[2]) +
((limb) ((s32) in2[2])) * ((s32) in[0]);
output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
((limb) ((s32) in2[2])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[0]);
output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[1])) +
((limb) ((s32) in2[0])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[0]);
output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[0]);
output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[1])) +
((limb) ((s32) in2[2])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[2]) +
((limb) ((s32) in2[0])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[0]);
output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[0]);
output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[1])) +
((limb) ((s32) in2[2])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[2]) +
((limb) ((s32) in2[0])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[0]);
output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[4]) +
((limb) ((s32) in2[3])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[0]);
output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
((limb) ((s32) in2[3])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[1])) +
((limb) ((s32) in2[4])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[4]) +
((limb) ((s32) in2[2])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[2]);
output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[5]) +
((limb) ((s32) in2[4])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[4]) +
((limb) ((s32) in2[3])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[2]);
output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[5]) +
((limb) ((s32) in2[3])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[3])) +
((limb) ((s32) in2[4])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[4]);
output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[6]) +
((limb) ((s32) in2[5])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[5]) +
((limb) ((s32) in2[4])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[4]);
output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
((limb) ((s32) in2[5])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[5])) +
((limb) ((s32) in2[6])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[6]);
output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[7]) +
((limb) ((s32) in2[6])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[6]);
output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[7]));
output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[8]);
output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
}
/* Reduce a long form to a short form by taking the input mod 2^255 - 19.
*
* On entry: |output[i]| < 14*2^54
* On exit: |output[0..8]| < 280*2^54 */
static void freduce_degree(limb *output) {
/* Each of these shifts and adds ends up multiplying the value by 19.
*
* For output[0..8], the absolute entry value is < 14*2^54 and we add, at
* most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */
output[8] += output[18] << 4;
output[8] += output[18] << 1;
output[8] += output[18];
output[7] += output[17] << 4;
output[7] += output[17] << 1;
output[7] += output[17];
output[6] += output[16] << 4;
output[6] += output[16] << 1;
output[6] += output[16];
output[5] += output[15] << 4;
output[5] += output[15] << 1;
output[5] += output[15];
output[4] += output[14] << 4;
output[4] += output[14] << 1;
output[4] += output[14];
output[3] += output[13] << 4;
output[3] += output[13] << 1;
output[3] += output[13];
output[2] += output[12] << 4;
output[2] += output[12] << 1;
output[2] += output[12];
output[1] += output[11] << 4;
output[1] += output[11] << 1;
output[1] += output[11];
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
}
#if (-1 & 3) != 3
#error "This code only works on a two's complement system"
#endif
/* return v / 2^26, using only shifts and adds.
*
* On entry: v can take any value. */
static inline limb
div_by_2_26(const limb v)
{
/* High word of v; no shift needed. */
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */
const int32_t sign = ((int32_t) highword) >> 31;
/* Set to 0x3ffffff if v was negative; else set to 0. */
const int32_t roundoff = ((uint32_t) sign) >> 6;
/* Should return v / (1<<26) */
return (v + roundoff) >> 26;
}
/* return v / (2^25), using only shifts and adds.
*
* On entry: v can take any value. */
static inline limb
div_by_2_25(const limb v)
{
/* High word of v; no shift needed*/
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */
const int32_t sign = ((int32_t) highword) >> 31;
/* Set to 0x1ffffff if v was negative; else set to 0. */
const int32_t roundoff = ((uint32_t) sign) >> 7;
/* Should return v / (1<<25) */
return (v + roundoff) >> 25;
}
/* Reduce all coefficients of the short form input so that |x| < 2^26.
*
* On entry: |output[i]| < 280*2^54 */
static void freduce_coefficients(limb *output) {
unsigned i;
output[10] = 0;
for (i = 0; i < 10; i += 2) {
limb over = div_by_2_26(output[i]);
/* The entry condition (that |output[i]| < 280*2^54) means that over is, at
* most, 280*2^28 in the first iteration of this loop. This is added to the
* next limb and we can approximate the resulting bound of that limb by
* 281*2^54. */
output[i] -= over << 26;
output[i+1] += over;
/* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
* 281*2^29. When this is added to the next limb, the resulting bound can
* be approximated as 281*2^54.
*
* For subsequent iterations of the loop, 281*2^54 remains a conservative
* bound and no overflow occurs. */
over = div_by_2_25(output[i+1]);
output[i+1] -= over << 25;
output[i+2] += over;
}
/* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
output[10] = 0;
/* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
* So |over| will be no more than 2^16. */
{
limb over = div_by_2_26(output[0]);
output[0] -= over << 26;
output[1] += over;
}
/* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
* bound on |output[1]| is sufficient to meet our needs. */
}
/* A helpful wrapper around fproduct: output = in * in2.
*
* On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
*
* output must be distinct to both inputs. The output is reduced degree
* (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */
static void
fmul(limb *output, const limb *in, const limb *in2) {
limb t[19];
fproduct(t, in, in2);
/* |t[i]| < 14*2^54 */
freduce_degree(t);
freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10);
}
/* Square a number: output = in**2
*
* output must be distinct from the input. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs. */
static void fsquare_inner(limb *output, const limb *in) {
output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
((limb) ((s32) in[0])) * ((s32) in[2]));
output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
((limb) ((s32) in[0])) * ((s32) in[3]));
output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
((limb) ((s32) in[1])) * ((s32) in[4]) +
((limb) ((s32) in[0])) * ((s32) in[5]));
output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
((limb) ((s32) in[2])) * ((s32) in[4]) +
((limb) ((s32) in[0])) * ((s32) in[6]) +
2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
((limb) ((s32) in[2])) * ((s32) in[5]) +
((limb) ((s32) in[1])) * ((s32) in[6]) +
((limb) ((s32) in[0])) * ((s32) in[7]));
output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
((limb) ((s32) in[0])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[5])));
output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
((limb) ((s32) in[3])) * ((s32) in[6]) +
((limb) ((s32) in[2])) * ((s32) in[7]) +
((limb) ((s32) in[1])) * ((s32) in[8]) +
((limb) ((s32) in[0])) * ((s32) in[9]));
output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
((limb) ((s32) in[4])) * ((s32) in[6]) +
((limb) ((s32) in[2])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
((limb) ((s32) in[1])) * ((s32) in[9])));
output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
((limb) ((s32) in[4])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[8]) +
((limb) ((s32) in[2])) * ((s32) in[9]));
output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[9])));
output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
((limb) ((s32) in[5])) * ((s32) in[8]) +
((limb) ((s32) in[4])) * ((s32) in[9]));
output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
((limb) ((s32) in[6])) * ((s32) in[8]) +
2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
((limb) ((s32) in[6])) * ((s32) in[9]));
output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
}
/* fsquare sets output = in^2.
*
* On entry: The |in| argument is in reduced coefficients form and |in[i]| <
* 2^27.
*
* On exit: The |output| argument is in reduced coefficients form (indeed, one
* need only provide storage for 10 limbs) and |out[i]| < 2^26. */
static void
fsquare(limb *output, const limb *in) {
limb t[19];
fsquare_inner(t, in);
/* |t[i]| < 14*2^54 because the largest product of two limbs will be <
* 2^(27+27) and fsquare_inner adds together, at most, 14 of those
* products. */
freduce_degree(t);
freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10);
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
static void
fexpand(limb *output, const u8 *input) {
#define F(n,start,shift,mask) \
output[n] = ((((limb) input[start + 0]) | \
((limb) input[start + 1]) << 8 | \
((limb) input[start + 2]) << 16 | \
((limb) input[start + 3]) << 24) >> shift) & mask;
F(0, 0, 0, 0x3ffffff);
F(1, 3, 2, 0x1ffffff);
F(2, 6, 3, 0x3ffffff);
F(3, 9, 5, 0x1ffffff);
F(4, 12, 6, 0x3ffffff);
F(5, 16, 0, 0x1ffffff);
F(6, 19, 1, 0x3ffffff);
F(7, 22, 3, 0x1ffffff);
F(8, 25, 4, 0x3ffffff);
F(9, 28, 6, 0x1ffffff);
#undef F
}
#if (-32 >> 1) != -16
#error "This code only works when >> does sign-extension on negative numbers"
#endif
/* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
static s32 s32_eq(s32 a, s32 b) {
a = ~(a ^ b);
a &= a << 16;
a &= a << 8;
a &= a << 4;
a &= a << 2;
a &= a << 1;
return a >> 31;
}
/* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
* both non-negative. */
static s32 s32_gte(s32 a, s32 b) {
a -= b;
/* a >= 0 iff a >= b. */
return ~(a >> 31);
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array.
*
* On entry: |input_limbs[i]| < 2^26 */
static void
fcontract(u8 *output, limb *input_limbs) {
int i;
int j;
s32 input[10];
s32 mask;
/* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */
for (i = 0; i < 10; i++) {
input[i] = input_limbs[i];
}
for (j = 0; j < 2; ++j) {
for (i = 0; i < 9; ++i) {
if ((i & 1) == 1) {
/* This calculation is a time-invariant way to make input[i]
* non-negative by borrowing from the next-larger limb. */
const s32 mask = input[i] >> 31;
const s32 carry = -((input[i] & mask) >> 25);
input[i] = input[i] + (carry << 25);
input[i+1] = input[i+1] - carry;
} else {
const s32 mask = input[i] >> 31;
const s32 carry = -((input[i] & mask) >> 26);
input[i] = input[i] + (carry << 26);
input[i+1] = input[i+1] - carry;
}
}
/* There's no greater limb for input[9] to borrow from, but we can multiply
* by 19 and borrow from input[0], which is valid mod 2^255-19. */
{
const s32 mask = input[9] >> 31;
const s32 carry = -((input[9] & mask) >> 25);
input[9] = input[9] + (carry << 25);
input[0] = input[0] - (carry * 19);
}
/* After the first iteration, input[1..9] are non-negative and fit within
* 25 or 26 bits, depending on position. However, input[0] may be
* negative. */
}
/* The first borrow-propagation pass above ended with every limb
except (possibly) input[0] non-negative.
If input[0] was negative after the first pass, then it was because of a
carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
In the second pass, each limb is decreased by at most one. Thus the second
borrow-propagation pass could only have wrapped around to decrease
input[0] again if the first pass left input[0] negative *and* input[1]
through input[9] were all zero. In that case, input[1] is now 2^25 - 1,
and this last borrow-propagation step will leave input[1] non-negative. */
{
const s32 mask = input[0] >> 31;
const s32 carry = -((input[0] & mask) >> 26);
input[0] = input[0] + (carry << 26);
input[1] = input[1] - carry;
}
/* All input[i] are now non-negative. However, there might be values between
* 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */
for (j = 0; j < 2; j++) {
for (i = 0; i < 9; i++) {
if ((i & 1) == 1) {
const s32 carry = input[i] >> 25;
input[i] &= 0x1ffffff;
input[i+1] += carry;
} else {
const s32 carry = input[i] >> 26;
input[i] &= 0x3ffffff;
input[i+1] += carry;
}
}
{
const s32 carry = input[9] >> 25;
input[9] &= 0x1ffffff;
input[0] += 19*carry;
}
}
/* If the first carry-chain pass, just above, ended up with a carry from
* input[9], and that caused input[0] to be out-of-bounds, then input[0] was
* < 2^26 + 2*19, because the carry was, at most, two.
*
* If the second pass carried from input[9] again then input[0] is < 2*19 and
* the input[9] -> input[0] carry didn't push input[0] out of bounds. */
/* It still remains the case that input might be between 2^255-19 and 2^255.
* In this case, input[1..9] must take their maximum value and input[0] must
* be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */
mask = s32_gte(input[0], 0x3ffffed);
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
mask &= s32_eq(input[i], 0x1ffffff);
} else {
mask &= s32_eq(input[i], 0x3ffffff);
}
}
/* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
* this conditionally subtracts 2^255-19. */
input[0] -= mask & 0x3ffffed;
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
input[i] -= mask & 0x1ffffff;
} else {
input[i] -= mask & 0x3ffffff;
}
}
input[1] <<= 2;
input[2] <<= 3;
input[3] <<= 5;
input[4] <<= 6;
input[6] <<= 1;
input[7] <<= 3;
input[8] <<= 4;
input[9] <<= 6;
#define F(i, s) \
output[s+0] |= input[i] & 0xff; \
output[s+1] = (input[i] >> 8) & 0xff; \
output[s+2] = (input[i] >> 16) & 0xff; \
output[s+3] = (input[i] >> 24) & 0xff;
output[0] = 0;
output[16] = 0;
F(0,0);
F(1,3);
F(2,6);
F(3,9);
F(4,12);
F(5,16);
F(6,19);
F(7,22);
F(8,25);
F(9,28);
#undef F
}
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z3: long form
* x3 z3: long form
* x z: short form, destroyed
* xprime zprime: short form, destroyed
* qmqp: short form, preserved
*
* On entry and exit, the absolute value of the limbs of all inputs and outputs
* are < 2^26. */
static void fmonty(limb *x2, limb *z2, /* output 2Q */
limb *x3, limb *z3, /* output Q + Q' */
limb *x, limb *z, /* input Q */
limb *xprime, limb *zprime, /* input Q' */
const limb *qmqp /* input Q - Q' */) {
limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
zzprime[19], zzzprime[19], xxxprime[19];
memcpy(origx, x, 10 * sizeof(limb));
fsum(x, z);
/* |x[i]| < 2^27 */
fdifference(z, origx); /* does x - z */
/* |z[i]| < 2^27 */
memcpy(origxprime, xprime, sizeof(limb) * 10);
fsum(xprime, zprime);
/* |xprime[i]| < 2^27 */
fdifference(zprime, origxprime);
/* |zprime[i]| < 2^27 */
fproduct(xxprime, xprime, z);
/* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
* 2^(27+27) and fproduct adds together, at most, 14 of those products.
* (Approximating that to 2^58 doesn't work out.) */
fproduct(zzprime, x, zprime);
/* |zzprime[i]| < 14*2^54 */
freduce_degree(xxprime);
freduce_coefficients(xxprime);
/* |xxprime[i]| < 2^26 */
freduce_degree(zzprime);
freduce_coefficients(zzprime);
/* |zzprime[i]| < 2^26 */
memcpy(origxprime, xxprime, sizeof(limb) * 10);
fsum(xxprime, zzprime);
/* |xxprime[i]| < 2^27 */
fdifference(zzprime, origxprime);
/* |zzprime[i]| < 2^27 */
fsquare(xxxprime, xxprime);
/* |xxxprime[i]| < 2^26 */
fsquare(zzzprime, zzprime);
/* |zzzprime[i]| < 2^26 */
fproduct(zzprime, zzzprime, qmqp);
/* |zzprime[i]| < 14*2^52 */
freduce_degree(zzprime);
freduce_coefficients(zzprime);
/* |zzprime[i]| < 2^26 */
memcpy(x3, xxxprime, sizeof(limb) * 10);
memcpy(z3, zzprime, sizeof(limb) * 10);
fsquare(xx, x);
/* |xx[i]| < 2^26 */
fsquare(zz, z);
/* |zz[i]| < 2^26 */
fproduct(x2, xx, zz);
/* |x2[i]| < 14*2^52 */
freduce_degree(x2);
freduce_coefficients(x2);
/* |x2[i]| < 2^26 */
fdifference(zz, xx); // does zz = xx - zz
/* |zz[i]| < 2^27 */
memset(zzz + 10, 0, sizeof(limb) * 9);
fscalar_product(zzz, zz, 121665);
/* |zzz[i]| < 2^(27+17) */
/* No need to call freduce_degree here:
fscalar_product doesn't increase the degree of its input. */
freduce_coefficients(zzz);
/* |zzz[i]| < 2^26 */
fsum(zzz, xx);
/* |zzz[i]| < 2^27 */
fproduct(z2, zz, zzz);
/* |z2[i]| < 14*2^(26+27) */
freduce_degree(z2);
freduce_coefficients(z2);
/* |z2|i| < 2^26 */
}
/* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
* them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid
* side-channel attacks.
*
* NOTE that this function requires that 'iswap' be 1 or 0; other values give
* wrong results. Also, the two limb arrays must be in reduced-coefficient,
* reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
* and all all values in a[0..9],b[0..9] must have magnitude less than
* INT32_MAX. */
static void
swap_conditional(limb a[19], limb b[19], limb iswap) {
unsigned i;
const s32 swap = (s32) -iswap;
for (i = 0; i < 10; ++i) {
const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) );
a[i] = ((s32)a[i]) ^ x;
b[i] = ((s32)b[i]) ^ x;
}
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form) */
static void
cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
unsigned i, j;
memcpy(nqpqx, q, sizeof(limb) * 10);
for (i = 0; i < 32; ++i) {
u8 byte = n[31 - i];
for (j = 0; j < 8; ++j) {
const limb bit = byte >> 7;
swap_conditional(nqx, nqpqx, bit);
swap_conditional(nqz, nqpqz, bit);
fmonty(nqx2, nqz2,
nqpqx2, nqpqz2,
nqx, nqz,
nqpqx, nqpqz,
q);
swap_conditional(nqx2, nqpqx2, bit);
swap_conditional(nqz2, nqpqz2, bit);
t = nqx;
nqx = nqx2;
nqx2 = t;
t = nqz;
nqz = nqz2;
nqz2 = t;
t = nqpqx;
nqpqx = nqpqx2;
nqpqx2 = t;
t = nqpqz;
nqpqz = nqpqz2;
nqpqz2 = t;
byte <<= 1;
}
}
memcpy(resultx, nqx, sizeof(limb) * 10);
memcpy(resultz, nqz, sizeof(limb) * 10);
}
// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code
// -----------------------------------------------------------------------------
static void
crecip(limb *out, const limb *z) {
limb z2[10];
limb z9[10];
limb z11[10];
limb z2_5_0[10];
limb z2_10_0[10];
limb z2_20_0[10];
limb z2_50_0[10];
limb z2_100_0[10];
limb t0[10];
limb t1[10];
int i;
/* 2 */ fsquare(z2,z);
/* 4 */ fsquare(t1,z2);
/* 8 */ fsquare(t0,t1);
/* 9 */ fmul(z9,t0,z);
/* 11 */ fmul(z11,z9,z2);
/* 22 */ fsquare(t0,z11);
/* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
/* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
/* 2^7 - 2^2 */ fsquare(t1,t0);
/* 2^8 - 2^3 */ fsquare(t0,t1);
/* 2^9 - 2^4 */ fsquare(t1,t0);
/* 2^10 - 2^5 */ fsquare(t0,t1);
/* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
/* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
/* 2^12 - 2^2 */ fsquare(t1,t0);
/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
/* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
/* 2^22 - 2^2 */ fsquare(t1,t0);
/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
/* 2^41 - 2^1 */ fsquare(t1,t0);
/* 2^42 - 2^2 */ fsquare(t0,t1);
/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
/* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
/* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
/* 2^52 - 2^2 */ fsquare(t1,t0);
/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
/* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
/* 2^102 - 2^2 */ fsquare(t0,t1);
/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
/* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
/* 2^201 - 2^1 */ fsquare(t0,t1);
/* 2^202 - 2^2 */ fsquare(t1,t0);
/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
/* 2^251 - 2^1 */ fsquare(t1,t0);
/* 2^252 - 2^2 */ fsquare(t0,t1);
/* 2^253 - 2^3 */ fsquare(t1,t0);
/* 2^254 - 2^4 */ fsquare(t0,t1);
/* 2^255 - 2^5 */ fsquare(t1,t0);
/* 2^255 - 21 */ fmul(out,t1,z11);
}
int
curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
limb bp[10], x[10], z[11], zmone[10];
uint8_t e[32];
int i;
for (i = 0; i < 32; ++i) e[i] = secret[i];
e[0] &= 248;
e[31] &= 127;
e[31] |= 64;
fexpand(bp, basepoint);
cmult(x, z, e, bp);
crecip(zmone, z);
fmul(z, x, zmone);
fcontract(mypublic, z);
return 0;
}

View File

@ -1,13 +0,0 @@
Pod::Spec.new do |s|
s.name = "curve25519-donna"
s.version = "1.2.1"
s.summary = "Implementations of a fast elliptic-curve, Diffie-Hellman primitive"
s.description = <<-DESC
Curve25519 is a state-of-the-art Diffie-Hellman function suitable for a wide variety of applications.
DESC
s.homepage = "http://code.google.com/p/curve25519-donna"
s.license = 'BSD 3-Clause'
s.author = 'Dan Bernstein'
s.source = { :git => "https://github.com/agl/curve25519-donna.git", :tag => "1.2.1" }
s.source_files = 'curve25519-donna.c'
end

View File

@ -1,4 +0,0 @@
from .keys import Private, Public
hush_pyflakes = [Private, Public]; del hush_pyflakes

View File

@ -1,105 +0,0 @@
/* tell python that PyArg_ParseTuple(t#) means Py_ssize_t, not int */
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#if (PY_VERSION_HEX < 0x02050000)
typedef int Py_ssize_t;
#endif
/* This is required for compatibility with Python 2. */
#if PY_MAJOR_VERSION >= 3
#include <bytesobject.h>
#define y "y"
#else
#define PyBytes_FromStringAndSize PyString_FromStringAndSize
#define y "t"
#endif
int curve25519_donna(char *mypublic,
const char *secret, const char *basepoint);
static PyObject *
pycurve25519_makeprivate(PyObject *self, PyObject *args)
{
char *in1;
Py_ssize_t in1len;
if (!PyArg_ParseTuple(args, y"#:clamp", &in1, &in1len))
return NULL;
if (in1len != 32) {
PyErr_SetString(PyExc_ValueError, "input must be 32-byte string");
return NULL;
}
in1[0] &= 248;
in1[31] &= 127;
in1[31] |= 64;
return PyBytes_FromStringAndSize((char *)in1, 32);
}
static PyObject *
pycurve25519_makepublic(PyObject *self, PyObject *args)
{
const char *private;
char mypublic[32];
char basepoint[32] = {9};
Py_ssize_t privatelen;
if (!PyArg_ParseTuple(args, y"#:makepublic", &private, &privatelen))
return NULL;
if (privatelen != 32) {
PyErr_SetString(PyExc_ValueError, "input must be 32-byte string");
return NULL;
}
curve25519_donna(mypublic, private, basepoint);
return PyBytes_FromStringAndSize((char *)mypublic, 32);
}
static PyObject *
pycurve25519_makeshared(PyObject *self, PyObject *args)
{
const char *myprivate, *theirpublic;
char shared_key[32];
Py_ssize_t myprivatelen, theirpubliclen;
if (!PyArg_ParseTuple(args, y"#"y"#:generate",
&myprivate, &myprivatelen, &theirpublic, &theirpubliclen))
return NULL;
if (myprivatelen != 32) {
PyErr_SetString(PyExc_ValueError, "input must be 32-byte string");
return NULL;
}
if (theirpubliclen != 32) {
PyErr_SetString(PyExc_ValueError, "input must be 32-byte string");
return NULL;
}
curve25519_donna(shared_key, myprivate, theirpublic);
return PyBytes_FromStringAndSize((char *)shared_key, 32);
}
static PyMethodDef
curve25519_functions[] = {
{"make_private", pycurve25519_makeprivate, METH_VARARGS, "data->private"},
{"make_public", pycurve25519_makepublic, METH_VARARGS, "private->public"},
{"make_shared", pycurve25519_makeshared, METH_VARARGS, "private+public->shared"},
{NULL, NULL, 0, NULL},
};
#if PY_MAJOR_VERSION >= 3
static struct PyModuleDef
curve25519_module = {
PyModuleDef_HEAD_INIT,
"_curve25519",
NULL,
NULL,
curve25519_functions,
};
PyObject *
PyInit__curve25519(void)
{
return PyModule_Create(&curve25519_module);
}
#else
PyMODINIT_FUNC
init_curve25519(void)
{
(void)Py_InitModule("_curve25519", curve25519_functions);
}
#endif

View File

@ -1,46 +0,0 @@
from . import _curve25519
from hashlib import sha256
import os
# the curve25519 functions are really simple, and could be used without an
# OOP layer, but it's a bit too easy to accidentally swap the private and
# public keys that way.
def _hash_shared(shared):
return sha256(b"curve25519-shared:"+shared).digest()
class Private:
def __init__(self, secret=None, seed=None):
if secret is None:
if seed is None:
secret = os.urandom(32)
else:
secret = sha256(b"curve25519-private:"+seed).digest()
else:
assert seed is None, "provide secret, seed, or neither, not both"
if not isinstance(secret, bytes) or len(secret) != 32:
raise TypeError("secret= must be 32-byte string")
self.private = _curve25519.make_private(secret)
def serialize(self):
return self.private
def get_public(self):
return Public(_curve25519.make_public(self.private))
def get_shared_key(self, public, hashfunc=None):
if not isinstance(public, Public):
raise ValueError("'public' must be an instance of Public")
if hashfunc is None:
hashfunc = _hash_shared
shared = _curve25519.make_shared(self.private, public.public)
return hashfunc(shared)
class Public:
def __init__(self, public):
assert isinstance(public, bytes)
assert len(public) == 32
self.public = public
def serialize(self):
return self.public

View File

@ -1,99 +0,0 @@
#! /usr/bin/env python
import unittest
from curve25519 import Private, Public
from hashlib import sha1, sha256
from binascii import hexlify
class Basic(unittest.TestCase):
def test_basic(self):
secret1 = b"abcdefghijklmnopqrstuvwxyz123456"
self.assertEqual(len(secret1), 32)
secret2 = b"654321zyxwvutsrqponmlkjihgfedcba"
self.assertEqual(len(secret2), 32)
priv1 = Private(secret=secret1)
pub1 = priv1.get_public()
priv2 = Private(secret=secret2)
pub2 = priv2.get_public()
shared12 = priv1.get_shared_key(pub2)
e = b"b0818125eab42a8ac1af5e8b9b9c15ed2605c2bbe9675de89e5e6e7f442b9598"
self.assertEqual(hexlify(shared12), e)
shared21 = priv2.get_shared_key(pub1)
self.assertEqual(shared12, shared21)
pub2a = Public(pub2.serialize())
shared12a = priv1.get_shared_key(pub2a)
self.assertEqual(hexlify(shared12a), e)
def test_errors(self):
priv1 = Private()
self.assertRaises(ValueError, priv1.get_shared_key, priv1)
def test_seed(self):
# use 32-byte secret
self.assertRaises(TypeError, Private, secret=123)
self.assertRaises(TypeError, Private, secret=b"too short")
secret1 = b"abcdefghijklmnopqrstuvwxyz123456"
assert len(secret1) == 32
priv1 = Private(secret=secret1)
priv1a = Private(secret=secret1)
priv1b = Private(priv1.serialize())
self.assertEqual(priv1.serialize(), priv1a.serialize())
self.assertEqual(priv1.serialize(), priv1b.serialize())
e = b"6062636465666768696a6b6c6d6e6f707172737475767778797a313233343576"
self.assertEqual(hexlify(priv1.serialize()), e)
# the private key is a clamped form of the secret, so they won't
# quite be the same
p = Private(secret=b"\x00"*32)
self.assertEqual(hexlify(p.serialize()), b"00"*31+b"40")
p = Private(secret=b"\xff"*32)
self.assertEqual(hexlify(p.serialize()), b"f8"+b"ff"*30+b"7f")
# use arbitrary-length seed
self.assertRaises(TypeError, Private, seed=123)
priv1 = Private(seed=b"abc")
priv1a = Private(seed=b"abc")
priv1b = Private(priv1.serialize())
self.assertEqual(priv1.serialize(), priv1a.serialize())
self.assertEqual(priv1.serialize(), priv1b.serialize())
self.assertRaises(AssertionError, Private, seed=b"abc", secret=b"no")
priv1 = Private(seed=b"abc")
priv1a = Private(priv1.serialize())
self.assertEqual(priv1.serialize(), priv1a.serialize())
self.assertRaises(AssertionError, Private, seed=b"abc", secret=b"no")
# use built-in os.urandom
priv2 = Private()
priv2a = Private(priv2.private)
self.assertEqual(priv2.serialize(), priv2a.serialize())
# attempt to use both secret= and seed=, not allowed
self.assertRaises(AssertionError, Private, seed=b"abc", secret=b"no")
def test_hashfunc(self):
priv1 = Private(seed=b"abc")
priv2 = Private(seed=b"def")
shared_sha256 = priv1.get_shared_key(priv2.get_public())
e = b"da959ffe77ebeb4757fe5ba310e28ede425ae0d0ff5ec9c884e2d08f311cf5e5"
self.assertEqual(hexlify(shared_sha256), e)
# confirm the hash function remains what we think it is
def myhash(shared_key):
return sha256(b"curve25519-shared:"+shared_key).digest()
shared_myhash = priv1.get_shared_key(priv2.get_public(), myhash)
self.assertEqual(hexlify(shared_myhash), e)
def hexhash(shared_key):
return sha1(shared_key).hexdigest().encode()
shared_hexhash = priv1.get_shared_key(priv2.get_public(), hexhash)
self.assertEqual(shared_hexhash,
b"80eec98222c8edc4324fb9477a3c775ce7c6c93a")
if __name__ == "__main__":
unittest.main()

View File

@ -1,46 +0,0 @@
#! /usr/bin/env python
from time import time
from curve25519 import Private
count = 10000
elapsed_get_public = 0.0
elapsed_get_shared = 0.0
def abbreviate_time(data):
# 1.23s, 790ms, 132us
if data is None:
return ""
s = float(data)
if s >= 10:
#return abbreviate.abbreviate_time(data)
return "%d" % s
if s >= 1.0:
return "%.2fs" % s
if s >= 0.01:
return "%dms" % (1000*s)
if s >= 0.001:
return "%.1fms" % (1000*s)
if s >= 0.000001:
return "%.1fus" % (1000000*s)
return "%dns" % (1000000000*s)
def nohash(key): return key
for i in range(count):
p = Private()
start = time()
pub = p.get_public()
elapsed_get_public += time() - start
pub2 = Private().get_public()
start = time()
shared = p.get_shared_key(pub2) #, hashfunc=nohash)
elapsed_get_shared += time() - start
print("get_public: %s" % abbreviate_time(elapsed_get_public / count))
print("get_shared: %s" % abbreviate_time(elapsed_get_shared / count))
# these take about 560us-570us each (with the default compiler settings, -Os)
# on my laptop, same with -O2
# of which the python overhead is about 5us
# and the get_shared_key() hash step adds about 5us

View File

@ -1,38 +0,0 @@
#! /usr/bin/env python
from subprocess import Popen, PIPE
from distutils.core import setup, Extension
version = Popen(["git", "describe", "--tags"], stdout=PIPE).communicate()[0]\
.strip().decode("utf8")
ext_modules = [Extension("curve25519._curve25519",
["python-src/curve25519/curve25519module.c",
"curve25519-donna.c"],
)]
short_description="Python wrapper for the Curve25519 cryptographic library"
long_description="""\
Curve25519 is a fast elliptic-curve key-agreement protocol, in which two
parties Alice and Bob each generate a (public,private) keypair, exchange
public keys, and can then compute the same shared key. Specifically, Alice
computes F(Aprivate, Bpublic), Bob computes F(Bprivate, Apublic), and both
get the same value (and nobody else can guess that shared value, even if they
know Apublic and Bpublic).
This is a Python wrapper for the portable 'curve25519-donna' implementation
of this algorithm, written by Adam Langley, hosted at
http://code.google.com/p/curve25519-donna/
"""
setup(name="curve25519-donna",
version=version,
description=short_description,
long_description=long_description,
author="Brian Warner",
author_email="warner-pycurve25519-donna@lothar.com",
license="BSD",
packages=["curve25519", "curve25519.test"],
package_dir={"curve25519": "python-src/curve25519"},
ext_modules=ext_modules,
)

View File

@ -1,50 +0,0 @@
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include <stdint.h>
typedef uint8_t u8;
extern void curve25519_donna(u8 *output, const u8 *secret, const u8 *bp);
static uint64_t
time_now() {
struct timeval tv;
uint64_t ret;
gettimeofday(&tv, NULL);
ret = tv.tv_sec;
ret *= 1000000;
ret += tv.tv_usec;
return ret;
}
int
main() {
static const unsigned char basepoint[32] = {9};
unsigned char mysecret[32], mypublic[32];
unsigned i;
uint64_t start, end;
memset(mysecret, 42, 32);
mysecret[0] &= 248;
mysecret[31] &= 127;
mysecret[31] |= 64;
// Load the caches
for (i = 0; i < 1000; ++i) {
curve25519_donna(mypublic, mysecret, basepoint);
}
start = time_now();
for (i = 0; i < 30000; ++i) {
curve25519_donna(mypublic, mysecret, basepoint);
}
end = time_now();
printf("%luus\n", (unsigned long) ((end - start) / 30000));
return 0;
}

View File

@ -1,54 +0,0 @@
/*
test-curve25519 version 20050915
D. J. Bernstein
Public domain.
Tiny modifications by agl
*/
#include <stdio.h>
extern void curve25519_donna(unsigned char *output, const unsigned char *a,
const unsigned char *b);
void doit(unsigned char *ek,unsigned char *e,unsigned char *k);
void doit(unsigned char *ek,unsigned char *e,unsigned char *k)
{
int i;
for (i = 0;i < 32;++i) printf("%02x",(unsigned int) e[i]); printf(" ");
for (i = 0;i < 32;++i) printf("%02x",(unsigned int) k[i]); printf(" ");
curve25519_donna(ek,e,k);
for (i = 0;i < 32;++i) printf("%02x",(unsigned int) ek[i]); printf("\n");
}
unsigned char e1k[32];
unsigned char e2k[32];
unsigned char e1e2k[32];
unsigned char e2e1k[32];
unsigned char e1[32] = {3};
unsigned char e2[32] = {5};
unsigned char k[32] = {9};
int
main()
{
int loop;
int i;
for (loop = 0;loop < 10000;++loop) {
doit(e1k,e1,k);
doit(e2e1k,e2,e1k);
doit(e2k,e2,k);
doit(e1e2k,e1,e2k);
for (i = 0;i < 32;++i) if (e1e2k[i] != e2e1k[i]) {
printf("fail\n");
return 1;
}
for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
}
return 0;
}

View File

@ -1,39 +0,0 @@
/* This file can be used to test whether the code handles non-canonical curve
* points (i.e. points with the 256th bit set) in the same way as the reference
* implementation. */
#include <stdint.h>
#include <stdio.h>
#include <string.h>
extern void curve25519_donna(unsigned char *output, const unsigned char *a,
const unsigned char *b);
int
main()
{
static const uint8_t point1[32] = {
0x25,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
};
static const uint8_t point2[32] = {
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
};
static const uint8_t scalar[32] = { 1 };
uint8_t out1[32], out2[32];
curve25519_donna(out1, scalar, point1);
curve25519_donna(out2, scalar, point2);
if (0 == memcmp(out1, out2, sizeof(out1))) {
fprintf(stderr, "Top bit not ignored.\n");
return 1;
}
fprintf(stderr, "Top bit correctly ignored.\n");
return 0;
}

View File

@ -1,72 +0,0 @@
#define _GNU_SOURCE
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <math.h>
extern void curve25519_donna(uint8_t *, const uint8_t *, const uint8_t *);
extern uint64_t tsc_read();
int
main(int argc, char **argv) {
uint8_t private_key[32], public[32], peer1[32], peer2[32], output[32];
static const uint8_t basepoint[32] = {9};
unsigned i;
uint64_t sum = 0, sum_squares = 0, skipped = 0, mean;
static const unsigned count = 200000;
memset(private_key, 42, sizeof(private_key));
private_key[0] &= 248;
private_key[31] &= 127;
private_key[31] |= 64;
curve25519_donna(public, private_key, basepoint);
memset(peer1, 0, sizeof(peer1));
memset(peer2, 255, sizeof(peer2));
for (i = 0; i < count; ++i) {
const uint64_t start = tsc_read();
curve25519_donna(output, peer1, public);
const uint64_t end = tsc_read();
const uint64_t delta = end - start;
if (delta > 650000) {
// something terrible happened (task switch etc)
skipped++;
continue;
}
sum += delta;
sum_squares += (delta * delta);
}
mean = sum / ((uint64_t) count);
printf("all 0: mean:%lu sd:%f skipped:%lu\n",
mean,
sqrt((double)(sum_squares/((uint64_t) count) - mean*mean)),
skipped);
sum = sum_squares = skipped = 0;
for (i = 0; i < count; ++i) {
const uint64_t start = tsc_read();
curve25519_donna(output, peer2, public);
const uint64_t end = tsc_read();
const uint64_t delta = end - start;
if (delta > 650000) {
// something terrible happened (task switch etc)
skipped++;
continue;
}
sum += delta;
sum_squares += (delta * delta);
}
mean = sum / ((uint64_t) count);
printf("all 1: mean:%lu sd:%f skipped:%lu\n",
mean,
sqrt((double)(sum_squares/((uint64_t) count) - mean*mean)),
skipped);
return 0;
}

View File

@ -1,8 +0,0 @@
.text
.globl tsc_read
tsc_read:
rdtsc
shl $32,%rdx
or %rdx,%rax
ret

View File

@ -17,26 +17,12 @@
#include <cstring>
#if defined(OLM_USE_OPENSSL) || defined(OLM_USE_LIBRESSL)
#include <openssl/crypto.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#ifdef OLM_USE_OPENSSL
#include <openssl/kdf.h>
#else
#include <openssl/hkdf.h>
#endif
#else
extern "C" {
#include "crypto-algorithms/aes.h"
#include "crypto-algorithms/sha256.h"
}
#endif
#include "ed25519/src/ed25519.h"
#include "curve25519-donna.h"
namespace {
@ -47,73 +33,6 @@ static const std::size_t AES_BLOCK_LENGTH = 16;
static const std::size_t SHA256_BLOCK_LENGTH = 64;
static const std::uint8_t HKDF_DEFAULT_SALT[32] = {};
#if !defined(OLM_USE_OPENSSL) && !defined(OLM_USE_LIBRESSL)
template<std::size_t block_size>
inline static void xor_block(
std::uint8_t * block,
std::uint8_t const * input
) {
for (std::size_t i = 0; i < block_size; ++i) {
block[i] ^= input[i];
}
}
inline static void hmac_sha256_key(
std::uint8_t const * input_key, std::size_t input_key_length,
std::uint8_t * hmac_key
) {
std::memset(hmac_key, 0, SHA256_BLOCK_LENGTH);
if (input_key_length > SHA256_BLOCK_LENGTH) {
::SHA256_CTX context;
::sha256_init(&context);
::sha256_update(&context, input_key, input_key_length);
::sha256_final(&context, hmac_key);
} else {
std::memcpy(hmac_key, input_key, input_key_length);
}
}
inline static void hmac_sha256_init(
::SHA256_CTX * context,
std::uint8_t const * hmac_key
) {
std::uint8_t i_pad[SHA256_BLOCK_LENGTH];
std::memcpy(i_pad, hmac_key, SHA256_BLOCK_LENGTH);
for (std::size_t i = 0; i < SHA256_BLOCK_LENGTH; ++i) {
i_pad[i] ^= 0x36;
}
::sha256_init(context);
::sha256_update(context, i_pad, SHA256_BLOCK_LENGTH);
olm::unset(i_pad);
}
inline static void hmac_sha256_final(
::SHA256_CTX * context,
std::uint8_t const * hmac_key,
std::uint8_t * output
) {
std::uint8_t o_pad[SHA256_BLOCK_LENGTH + SHA256_OUTPUT_LENGTH];
std::memcpy(o_pad, hmac_key, SHA256_BLOCK_LENGTH);
for (std::size_t i = 0; i < SHA256_BLOCK_LENGTH; ++i) {
o_pad[i] ^= 0x5C;
}
::sha256_final(context, o_pad + SHA256_BLOCK_LENGTH);
::SHA256_CTX final_context;
::sha256_init(&final_context);
::sha256_update(&final_context, o_pad, sizeof(o_pad));
::sha256_final(&final_context, output);
olm::unset(final_context);
olm::unset(o_pad);
}
#else
template <typename T>
static T checked(T val) {
if (!val) {
@ -122,16 +41,12 @@ static T checked(T val) {
return val;
}
#endif
} // namespace
void _olm_crypto_curve25519_generate_key(
uint8_t const * random_32_bytes,
struct _olm_curve25519_key_pair *key_pair
) {
#ifdef OLM_USE_OPENSSL
EVP_PKEY *pkey = checked(EVP_PKEY_new_raw_private_key(EVP_PKEY_X25519, nullptr,
random_32_bytes, 32));
size_t priv_len = CURVE25519_KEY_LENGTH;
@ -139,17 +54,6 @@ void _olm_crypto_curve25519_generate_key(
checked(EVP_PKEY_get_raw_private_key(pkey, key_pair->private_key.private_key, &priv_len));
checked(EVP_PKEY_get_raw_public_key(pkey, key_pair->public_key.public_key, &pub_len));
EVP_PKEY_free(pkey);
#else
std::memcpy(
key_pair->private_key.private_key, random_32_bytes,
CURVE25519_KEY_LENGTH
);
::curve25519_donna(
key_pair->public_key.public_key,
key_pair->private_key.private_key,
CURVE25519_BASEPOINT
);
#endif
}
@ -158,7 +62,6 @@ void _olm_crypto_curve25519_shared_secret(
const struct _olm_curve25519_public_key * their_key,
std::uint8_t * output
) {
#ifdef OLM_USE_OPENSSL
EVP_PKEY *pkey = checked(EVP_PKEY_new_raw_private_key(EVP_PKEY_X25519, nullptr,
our_key->private_key.private_key, CURVE25519_KEY_LENGTH));
EVP_PKEY *peer = checked(EVP_PKEY_new_raw_public_key(EVP_PKEY_X25519, nullptr,
@ -171,9 +74,6 @@ void _olm_crypto_curve25519_shared_secret(
EVP_PKEY_CTX_free(ctx);
EVP_PKEY_free(peer);
EVP_PKEY_free(pkey);
#else
::curve25519_donna(output, our_key->private_key.private_key, their_key->public_key);
#endif
}
@ -228,37 +128,12 @@ void _olm_crypto_aes_encrypt_cbc(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
#if defined(OLM_USE_OPENSSL) || defined(OLM_USE_LIBRESSL)
EVP_CIPHER_CTX* ctx = checked(EVP_CIPHER_CTX_new());
checked(EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), nullptr, key->key, iv->iv));
int output_length[2];
checked(EVP_EncryptUpdate(ctx, output, &output_length[0], input, input_length));
checked(EVP_EncryptFinal_ex(ctx, output + output_length[0], &output_length[1]));
EVP_CIPHER_CTX_free(ctx);
#else
std::uint32_t key_schedule[AES_KEY_SCHEDULE_LENGTH];
::aes_key_setup(key->key, key_schedule, AES_KEY_BITS);
std::uint8_t input_block[AES_BLOCK_LENGTH];
std::memcpy(input_block, iv->iv, AES_BLOCK_LENGTH);
while (input_length >= AES_BLOCK_LENGTH) {
xor_block<AES_BLOCK_LENGTH>(input_block, input);
::aes_encrypt(input_block, output, key_schedule, AES_KEY_BITS);
std::memcpy(input_block, output, AES_BLOCK_LENGTH);
input += AES_BLOCK_LENGTH;
output += AES_BLOCK_LENGTH;
input_length -= AES_BLOCK_LENGTH;
}
std::size_t i = 0;
for (; i < input_length; ++i) {
input_block[i] ^= input[i];
}
for (; i < AES_BLOCK_LENGTH; ++i) {
input_block[i] ^= AES_BLOCK_LENGTH - input_length;
}
::aes_encrypt(input_block, output, key_schedule, AES_KEY_BITS);
olm::unset(key_schedule);
olm::unset(input_block);
#endif
}
@ -268,7 +143,6 @@ std::size_t _olm_crypto_aes_decrypt_cbc(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
#if defined(OLM_USE_OPENSSL) || defined(OLM_USE_LIBRESSL)
EVP_CIPHER_CTX* ctx = checked(EVP_CIPHER_CTX_new());
checked(EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), nullptr, key->key, iv->iv));
int output_length[2];
@ -276,24 +150,6 @@ std::size_t _olm_crypto_aes_decrypt_cbc(
checked(EVP_DecryptFinal_ex(ctx, output + output_length[0], &output_length[1]));
EVP_CIPHER_CTX_free(ctx);
return output_length[0] + output_length[1];
#else
std::uint32_t key_schedule[AES_KEY_SCHEDULE_LENGTH];
::aes_key_setup(key->key, key_schedule, AES_KEY_BITS);
std::uint8_t block1[AES_BLOCK_LENGTH];
std::uint8_t block2[AES_BLOCK_LENGTH];
std::memcpy(block1, iv->iv, AES_BLOCK_LENGTH);
for (std::size_t i = 0; i < input_length; i += AES_BLOCK_LENGTH) {
std::memcpy(block2, &input[i], AES_BLOCK_LENGTH);
::aes_decrypt(&input[i], &output[i], key_schedule, AES_KEY_BITS);
xor_block<AES_BLOCK_LENGTH>(&output[i], block1);
std::memcpy(block1, block2, AES_BLOCK_LENGTH);
}
olm::unset(key_schedule);
olm::unset(block1);
olm::unset(block2);
std::size_t padding = output[input_length - 1];
return (padding > input_length) ? std::size_t(-1) : (input_length - padding);
#endif
}
@ -301,15 +157,7 @@ void _olm_crypto_sha256(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
#if defined(OLM_USE_OPENSSL) || defined(OLM_USE_LIBRESSL)
checked(EVP_Digest(input, input_length, output, nullptr, EVP_sha256(), nullptr));
#else
::SHA256_CTX context;
::sha256_init(&context);
::sha256_update(&context, input, input_length);
::sha256_final(&context, output);
olm::unset(context);
#endif
}
@ -318,18 +166,7 @@ void _olm_crypto_hmac_sha256(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
#if defined(OLM_USE_OPENSSL) || defined(OLM_USE_LIBRESSL)
checked(HMAC(EVP_sha256(), key, key_length, input, input_length, output, nullptr));
#else
std::uint8_t hmac_key[SHA256_BLOCK_LENGTH];
::SHA256_CTX context;
hmac_sha256_key(key, key_length, hmac_key);
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, input, input_length);
hmac_sha256_final(&context, hmac_key, output);
olm::unset(hmac_key);
olm::unset(context);
#endif
}
@ -339,7 +176,6 @@ void _olm_crypto_hkdf_sha256(
std::uint8_t const * info, std::size_t info_length,
std::uint8_t * output, std::size_t output_length
) {
#ifdef OLM_USE_OPENSSL
EVP_PKEY_CTX *pctx = checked(EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL));
checked(EVP_PKEY_derive_init(pctx));
checked(EVP_PKEY_CTX_set_hkdf_md(pctx, EVP_sha256()));
@ -360,50 +196,4 @@ void _olm_crypto_hkdf_sha256(
checked(EVP_PKEY_CTX_add1_hkdf_info(pctx, info, info_length));
checked(EVP_PKEY_derive(pctx, output, &output_length));
EVP_PKEY_CTX_free(pctx);
#elif defined(OLM_USE_LIBRESSL)
if (salt_length == 0) {
/* LibreSSL HKDF rejects nullptr salt, even if salt_length is 0.
* salt needs to be set to something else. */
salt = (const uint8_t*)"";
}
checked(HKDF(output, output_length, EVP_sha256(), input, input_length,
salt, salt_length, info, info_length));
#else
::SHA256_CTX context;
std::uint8_t hmac_key[SHA256_BLOCK_LENGTH];
std::uint8_t step_result[SHA256_OUTPUT_LENGTH];
std::size_t bytes_remaining = output_length;
std::uint8_t iteration = 1;
if (!salt) {
salt = HKDF_DEFAULT_SALT;
salt_length = sizeof(HKDF_DEFAULT_SALT);
}
/* Extract */
hmac_sha256_key(salt, salt_length, hmac_key);
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, input, input_length);
hmac_sha256_final(&context, hmac_key, step_result);
hmac_sha256_key(step_result, SHA256_OUTPUT_LENGTH, hmac_key);
/* Expand */
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, info, info_length);
::sha256_update(&context, &iteration, 1);
hmac_sha256_final(&context, hmac_key, step_result);
while (bytes_remaining > SHA256_OUTPUT_LENGTH) {
std::memcpy(output, step_result, SHA256_OUTPUT_LENGTH);
output += SHA256_OUTPUT_LENGTH;
bytes_remaining -= SHA256_OUTPUT_LENGTH;
iteration ++;
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, step_result, SHA256_OUTPUT_LENGTH);
::sha256_update(&context, info, info_length);
::sha256_update(&context, &iteration, 1);
hmac_sha256_final(&context, hmac_key, step_result);
}
std::memcpy(output, step_result, bytes_remaining);
olm::unset(context);
olm::unset(hmac_key);
olm::unset(step_result);
#endif
}