/********************************************************************* * Filename: sha1.c * Author: Brad Conte (brad AT bradconte.com) * Copyright: * Disclaimer: This code is presented "as is" without any guarantees. * Details: Implementation of the SHA1 hashing algorithm. Algorithm specification can be found here: * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf This implementation uses little endian byte order. *********************************************************************/ /*************************** HEADER FILES ***************************/ #include #include #include "sha1.h" /****************************** MACROS ******************************/ #define ROTLEFT(a, b) ((a << b) | (a >> (32 - b))) /*********************** FUNCTION DEFINITIONS ***********************/ void sha1_transform(SHA1_CTX *ctx, const BYTE data[]) { WORD a, b, c, d, e, i, j, t, m[80]; for (i = 0, j = 0; i < 16; ++i, j += 4) m[i] = (data[j] << 24) + (data[j + 1] << 16) + (data[j + 2] << 8) + (data[j + 3]); for ( ; i < 80; ++i) { m[i] = (m[i - 3] ^ m[i - 8] ^ m[i - 14] ^ m[i - 16]); m[i] = (m[i] << 1) | (m[i] >> 31); } a = ctx->state[0]; b = ctx->state[1]; c = ctx->state[2]; d = ctx->state[3]; e = ctx->state[4]; for (i = 0; i < 20; ++i) { t = ROTLEFT(a, 5) + ((b & c) ^ (~b & d)) + e + ctx->k[0] + m[i]; e = d; d = c; c = ROTLEFT(b, 30); b = a; a = t; } for ( ; i < 40; ++i) { t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[1] + m[i]; e = d; d = c; c = ROTLEFT(b, 30); b = a; a = t; } for ( ; i < 60; ++i) { t = ROTLEFT(a, 5) + ((b & c) ^ (b & d) ^ (c & d)) + e + ctx->k[2] + m[i]; e = d; d = c; c = ROTLEFT(b, 30); b = a; a = t; } for ( ; i < 80; ++i) { t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[3] + m[i]; e = d; d = c; c = ROTLEFT(b, 30); b = a; a = t; } ctx->state[0] += a; ctx->state[1] += b; ctx->state[2] += c; ctx->state[3] += d; ctx->state[4] += e; } void sha1_init(SHA1_CTX *ctx) { ctx->datalen = 0; ctx->bitlen = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; ctx->state[4] = 0xc3d2e1f0; ctx->k[0] = 0x5a827999; ctx->k[1] = 0x6ed9eba1; ctx->k[2] = 0x8f1bbcdc; ctx->k[3] = 0xca62c1d6; } void sha1_update(SHA1_CTX *ctx, const BYTE data[], size_t len) { size_t i; for (i = 0; i < len; ++i) { ctx->data[ctx->datalen] = data[i]; ctx->datalen++; if (ctx->datalen == 64) { sha1_transform(ctx, ctx->data); ctx->bitlen += 512; ctx->datalen = 0; } } } void sha1_final(SHA1_CTX *ctx, BYTE hash[]) { WORD i; i = ctx->datalen; // Pad whatever data is left in the buffer. if (ctx->datalen < 56) { ctx->data[i++] = 0x80; while (i < 56) ctx->data[i++] = 0x00; } else { ctx->data[i++] = 0x80; while (i < 64) ctx->data[i++] = 0x00; sha1_transform(ctx, ctx->data); memset(ctx->data, 0, 56); } // Append to the padding the total message's length in bits and transform. ctx->bitlen += ctx->datalen * 8; ctx->data[63] = ctx->bitlen; ctx->data[62] = ctx->bitlen >> 8; ctx->data[61] = ctx->bitlen >> 16; ctx->data[60] = ctx->bitlen >> 24; ctx->data[59] = ctx->bitlen >> 32; ctx->data[58] = ctx->bitlen >> 40; ctx->data[57] = ctx->bitlen >> 48; ctx->data[56] = ctx->bitlen >> 56; sha1_transform(ctx, ctx->data); // Since this implementation uses little endian byte ordering and MD uses big endian, // reverse all the bytes when copying the final state to the output hash. for (i = 0; i < 4; ++i) { hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff; hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff; hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff; hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff; hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff; } }