olm/src/ratchet.cpp

562 lines
18 KiB
C++

/* Copyright 2015 OpenMarket Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "axolotl/ratchet.hh"
#include "axolotl/message.hh"
#include "axolotl/memory.hh"
#include "axolotl/cipher.hh"
#include <cstring>
namespace {
std::uint8_t PROTOCOL_VERSION = 3;
std::size_t KEY_LENGTH = axolotl::Curve25519PublicKey::LENGTH;
std::uint8_t MESSAGE_KEY_SEED[1] = {0x01};
std::uint8_t CHAIN_KEY_SEED[1] = {0x02};
std::size_t MAX_MESSAGE_GAP = 2000;
void create_chain_key(
axolotl::SharedKey const & root_key,
axolotl::Curve25519KeyPair const & our_key,
axolotl::Curve25519PublicKey const & their_key,
axolotl::KdfInfo const & info,
axolotl::SharedKey & new_root_key,
axolotl::ChainKey & new_chain_key
) {
axolotl::SharedKey secret;
axolotl::curve25519_shared_secret(our_key, their_key, secret);
std::uint8_t derived_secrets[64];
axolotl::hkdf_sha256(
secret, sizeof(secret),
root_key, sizeof(root_key),
info.ratchet_info, info.ratchet_info_length,
derived_secrets, sizeof(derived_secrets)
);
std::memcpy(new_root_key, derived_secrets, 32);
std::memcpy(new_chain_key.key, derived_secrets + 32, 32);
new_chain_key.index = 0;
axolotl::unset(derived_secrets);
axolotl::unset(secret);
}
void advance_chain_key(
axolotl::ChainKey const & chain_key,
axolotl::ChainKey & new_chain_key
) {
axolotl::hmac_sha256(
chain_key.key, sizeof(chain_key.key),
CHAIN_KEY_SEED, sizeof(CHAIN_KEY_SEED),
new_chain_key.key
);
new_chain_key.index = chain_key.index + 1;
}
void create_message_keys(
axolotl::ChainKey const & chain_key,
axolotl::KdfInfo const & info,
axolotl::MessageKey & message_key
) {
axolotl::hmac_sha256(
chain_key.key, sizeof(chain_key.key),
MESSAGE_KEY_SEED, sizeof(MESSAGE_KEY_SEED),
message_key.key
);
message_key.index = chain_key.index;
}
std::size_t verify_mac_and_decrypt(
axolotl::Cipher const & cipher,
axolotl::MessageKey const & message_key,
axolotl::MessageReader const & reader,
std::uint8_t * plaintext, std::size_t max_plaintext_length
) {
return cipher.decrypt(
message_key.key, sizeof(message_key.key),
reader.input, reader.input_length,
reader.ciphertext, reader.ciphertext_length,
plaintext, max_plaintext_length
);
}
std::size_t verify_mac_and_decrypt_for_existing_chain(
axolotl::Ratchet const & session,
axolotl::ChainKey const & chain,
axolotl::MessageReader const & reader,
std::uint8_t * plaintext, std::size_t max_plaintext_length
) {
if (reader.counter < chain.index) {
return std::size_t(-1);
}
/* Limit the number of hashes we're prepared to compute */
if (reader.counter - chain.index > MAX_MESSAGE_GAP) {
return std::size_t(-1);
}
axolotl::ChainKey new_chain = chain;
while (new_chain.index < reader.counter) {
advance_chain_key(new_chain, new_chain);
}
axolotl::MessageKey message_key;
create_message_keys(new_chain, session.kdf_info, message_key);
std::size_t result = verify_mac_and_decrypt(
session.ratchet_cipher, message_key, reader,
plaintext, max_plaintext_length
);
axolotl::unset(new_chain);
return result;
}
std::size_t verify_mac_and_decrypt_for_new_chain(
axolotl::Ratchet const & session,
axolotl::MessageReader const & reader,
std::uint8_t * plaintext, std::size_t max_plaintext_length
) {
axolotl::SharedKey new_root_key;
axolotl::ReceiverChain new_chain;
/* They shouldn't move to a new chain until we've sent them a message
* acknowledging the last one */
if (session.sender_chain.empty()) {
return false;
}
/* Limit the number of hashes we're prepared to compute */
if (reader.counter > MAX_MESSAGE_GAP) {
return false;
}
std::memcpy(
new_chain.ratchet_key.public_key, reader.ratchet_key, KEY_LENGTH
);
create_chain_key(
session.root_key, session.sender_chain[0].ratchet_key,
new_chain.ratchet_key, session.kdf_info,
new_root_key, new_chain.chain_key
);
std::size_t result = verify_mac_and_decrypt_for_existing_chain(
session, new_chain.chain_key, reader,
plaintext, max_plaintext_length
);
axolotl::unset(new_root_key);
axolotl::unset(new_chain);
return result;
}
} // namespace
axolotl::Ratchet::Ratchet(
axolotl::KdfInfo const & kdf_info,
Cipher const & ratchet_cipher
) : kdf_info(kdf_info),
ratchet_cipher(ratchet_cipher),
last_error(axolotl::ErrorCode::SUCCESS) {
}
void axolotl::Ratchet::initialise_as_bob(
std::uint8_t const * shared_secret, std::size_t shared_secret_length,
axolotl::Curve25519PublicKey const & their_ratchet_key
) {
std::uint8_t derived_secrets[64];
axolotl::hkdf_sha256(
shared_secret, shared_secret_length,
nullptr, 0,
kdf_info.root_info, kdf_info.root_info_length,
derived_secrets, sizeof(derived_secrets)
);
receiver_chains.insert();
std::memcpy(root_key, derived_secrets, 32);
std::memcpy(receiver_chains[0].chain_key.key, derived_secrets + 32, 32);
receiver_chains[0].ratchet_key = their_ratchet_key;
axolotl::unset(derived_secrets);
}
void axolotl::Ratchet::initialise_as_alice(
std::uint8_t const * shared_secret, std::size_t shared_secret_length,
axolotl::Curve25519KeyPair const & our_ratchet_key
) {
std::uint8_t derived_secrets[64];
axolotl::hkdf_sha256(
shared_secret, shared_secret_length,
nullptr, 0,
kdf_info.root_info, kdf_info.root_info_length,
derived_secrets, sizeof(derived_secrets)
);
sender_chain.insert();
std::memcpy(root_key, derived_secrets, 32);
std::memcpy(sender_chain[0].chain_key.key, derived_secrets + 32, 32);
sender_chain[0].ratchet_key = our_ratchet_key;
axolotl::unset(derived_secrets);
}
std::size_t axolotl::Ratchet::pickle_length() {
std::size_t counter_length = 4;
std::size_t send_chain_length = counter_length + 64 + 32;
std::size_t recv_chain_length = counter_length + 32 + 32;
std::size_t skip_key_length = counter_length + 32 + 32;
std::size_t pickle_length = 3 * counter_length + 32;
pickle_length += sender_chain.size() * send_chain_length;
pickle_length += receiver_chains.size() * recv_chain_length;
pickle_length += skipped_message_keys.size() * skip_key_length;
return pickle_length;
}
namespace {
std::uint8_t * pickle_counter(
std::uint8_t * output, std::uint32_t value
) {
unsigned i = 4;
output += 4;
while (i--) { *(--output) = value; value >>= 8; }
return output + 4;
}
std::uint8_t * unpickle_counter(
std::uint8_t *input, std::uint32_t &value
) {
unsigned i = 4;
value = 0;
while (i--) { value <<= 8; value |= *(input++); }
return input;
}
std::uint8_t * pickle_bytes(
std::uint8_t * output, std::size_t count, std::uint8_t const * bytes
) {
std::memcpy(output, bytes, count);
return output + count;
}
std::uint8_t * unpickle_bytes(
std::uint8_t * input, std::size_t count, std::uint8_t * bytes
) {
std::memcpy(bytes, input, count);
return input + count;
}
} // namespace
std::size_t axolotl::Ratchet::pickle(
std::uint8_t * output, std::size_t output_length
) {
std::uint8_t * pos = output;
if (output_length < pickle_length()) {
last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
return std::size_t(-1);
}
pos = pickle_counter(pos, sender_chain.size());
pos = pickle_counter(pos, receiver_chains.size());
pos = pickle_counter(pos, skipped_message_keys.size());
pos = pickle_bytes(pos, 32, root_key);
for (const axolotl::SenderChain &chain : sender_chain) {
pos = pickle_counter(pos, chain.chain_key.index);
pos = pickle_bytes(pos, 32, chain.chain_key.key);
pos = pickle_bytes(pos, 32, chain.ratchet_key.public_key);
pos = pickle_bytes(pos, 32, chain.ratchet_key.private_key);
}
for (const axolotl::ReceiverChain &chain : receiver_chains) {
pos = pickle_counter(pos, chain.chain_key.index);
pos = pickle_bytes(pos, 32, chain.chain_key.key);
pos = pickle_bytes(pos, 32, chain.ratchet_key.public_key);
}
for (const axolotl::SkippedMessageKey &key : skipped_message_keys) {
pos = pickle_counter(pos, key.message_key.index);
pos = pickle_bytes(pos, 32, key.message_key.key);
pos = pickle_bytes(pos, 32, key.ratchet_key.public_key);
}
return pos - output;
}
std::size_t axolotl::Ratchet::unpickle(
std::uint8_t * input, std::size_t input_length
) {
std::uint8_t * pos = input;
std::uint8_t * end = input + input_length;
std::uint32_t send_chain_num, recv_chain_num, skipped_num;
if (end - pos < 4 * 3 + 32) {} // input too small.
pos = unpickle_counter(pos, send_chain_num);
pos = unpickle_counter(pos, recv_chain_num);
pos = unpickle_counter(pos, skipped_num);
pos = unpickle_bytes(pos, 32, root_key);
if (end - pos < send_chain_num * (32 * 3 + 4)) {} // input too small.
while (send_chain_num--) {
axolotl::SenderChain & chain = *sender_chain.insert(
sender_chain.end()
);
pos = unpickle_counter(pos, chain.chain_key.index);
pos = unpickle_bytes(pos, 32, chain.chain_key.key);
pos = unpickle_bytes(pos, 32, chain.ratchet_key.public_key);
pos = unpickle_bytes(pos, 32, chain.ratchet_key.private_key);
}
if (end - pos < recv_chain_num * (32 * 2 + 4)) {} // input too small.
while (recv_chain_num--) {
axolotl::ReceiverChain & chain = *receiver_chains.insert(
receiver_chains.end()
);
pos = unpickle_counter(pos, chain.chain_key.index);
pos = unpickle_bytes(pos, 32, chain.chain_key.key);
pos = unpickle_bytes(pos, 32, chain.ratchet_key.public_key);
}
if (end - pos < skipped_num * (32 * 3 + 16 + 4)) {} // input too small.
while (skipped_num--) {
axolotl::SkippedMessageKey &key = *skipped_message_keys.insert(
skipped_message_keys.end()
);
pos = unpickle_counter(pos, key.message_key.index);
pos = unpickle_bytes(pos, 32, key.message_key.key);
pos = unpickle_bytes(pos, 32, key.ratchet_key.public_key);
}
return pos - input;
}
std::size_t axolotl::Ratchet::encrypt_output_length(
std::size_t plaintext_length
) {
std::size_t counter = 0;
if (!sender_chain.empty()) {
counter = sender_chain[0].chain_key.index;
}
std::size_t padded = ratchet_cipher.encrypt_ciphertext_length(
plaintext_length
);
return axolotl::encode_message_length(
counter, KEY_LENGTH, padded, ratchet_cipher.mac_length()
);
}
std::size_t axolotl::Ratchet::encrypt_random_length() {
return sender_chain.empty() ? KEY_LENGTH : 0;
}
std::size_t axolotl::Ratchet::encrypt(
std::uint8_t const * plaintext, std::size_t plaintext_length,
std::uint8_t const * random, std::size_t random_length,
std::uint8_t * output, std::size_t max_output_length
) {
std::size_t output_length = encrypt_output_length(plaintext_length);
if (random_length < encrypt_random_length()) {
last_error = axolotl::ErrorCode::NOT_ENOUGH_RANDOM;
return std::size_t(-1);
}
if (max_output_length < output_length) {
last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
return std::size_t(-1);
}
if (sender_chain.empty()) {
sender_chain.insert();
axolotl::generate_key(random, sender_chain[0].ratchet_key);
create_chain_key(
root_key,
sender_chain[0].ratchet_key,
receiver_chains[0].ratchet_key,
kdf_info,
root_key, sender_chain[0].chain_key
);
}
MessageKey keys;
create_message_keys(sender_chain[0].chain_key, kdf_info, keys);
advance_chain_key(sender_chain[0].chain_key, sender_chain[0].chain_key);
std::size_t ciphertext_length = ratchet_cipher.encrypt_ciphertext_length(
plaintext_length
);
std::uint32_t counter = keys.index;
Curve25519PublicKey const & ratchet_key = sender_chain[0].ratchet_key;
axolotl::MessageWriter writer;
axolotl::encode_message(
writer, PROTOCOL_VERSION, counter, KEY_LENGTH, ciphertext_length, output
);
std::memcpy(writer.ratchet_key, ratchet_key.public_key, KEY_LENGTH);
ratchet_cipher.encrypt(
keys.key, sizeof(keys.key),
plaintext, plaintext_length,
writer.ciphertext, ciphertext_length,
output, output_length
);
axolotl::unset(keys);
return output_length;
}
std::size_t axolotl::Ratchet::decrypt_max_plaintext_length(
std::uint8_t const * input, std::size_t input_length
) {
axolotl::MessageReader reader;
axolotl::decode_message(
reader, input, input_length, ratchet_cipher.mac_length()
);
if (!reader.ciphertext) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_FORMAT;
return std::size_t(-1);
}
return ratchet_cipher.decrypt_max_plaintext_length(reader.ciphertext_length);
}
std::size_t axolotl::Ratchet::decrypt(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * plaintext, std::size_t max_plaintext_length
) {
axolotl::MessageReader reader;
axolotl::decode_message(
reader, input, input_length, ratchet_cipher.mac_length()
);
if (reader.version != PROTOCOL_VERSION) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_VERSION;
return std::size_t(-1);
}
if (!reader.has_counter || !reader.ratchet_key || !reader.ciphertext) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_FORMAT;
return std::size_t(-1);
}
std::size_t max_length = ratchet_cipher.decrypt_max_plaintext_length(
reader.ciphertext_length
);
if (max_plaintext_length < max_length) {
last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
return std::size_t(-1);
}
if (reader.ratchet_key_length != KEY_LENGTH) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_FORMAT;
return std::size_t(-1);
}
ReceiverChain * chain = nullptr;
for (axolotl::ReceiverChain & receiver_chain : receiver_chains) {
if (0 == std::memcmp(
receiver_chain.ratchet_key.public_key, reader.ratchet_key,
KEY_LENGTH
)) {
chain = &receiver_chain;
break;
}
}
std::size_t result = std::size_t(-1);
if (!chain) {
result = verify_mac_and_decrypt_for_new_chain(
*this, reader, plaintext, max_plaintext_length
);
} else if (chain->chain_key.index > reader.counter) {
/* Chain already advanced beyond the key for this message
* Check if the message keys are in the skipped key list. */
for (axolotl::SkippedMessageKey & skipped : skipped_message_keys) {
if (reader.counter == skipped.message_key.index
&& 0 == std::memcmp(
skipped.ratchet_key.public_key, reader.ratchet_key,
KEY_LENGTH
)
) {
/* Found the key for this message. Check the MAC. */
result = verify_mac_and_decrypt(
ratchet_cipher, skipped.message_key, reader,
plaintext, max_plaintext_length
);
if (result != std::size_t(-1)) {
/* Remove the key from the skipped keys now that we've
* decoded the message it corresponds to. */
axolotl::unset(skipped);
skipped_message_keys.erase(&skipped);
return result;
}
}
}
} else {
result = verify_mac_and_decrypt_for_existing_chain(
*this, chain->chain_key, reader, plaintext, max_plaintext_length
);
}
if (result == std::size_t(-1)) {
last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
return std::size_t(-1);
}
if (!chain) {
/* They have started using a new empheral ratchet key.
* We need to derive a new set of chain keys.
* We can discard our previous empheral ratchet key.
* We will generate a new key when we send the next message. */
chain = receiver_chains.insert();
std::memcpy(
chain->ratchet_key.public_key, reader.ratchet_key, KEY_LENGTH
);
create_chain_key(
root_key, sender_chain[0].ratchet_key, chain->ratchet_key,
kdf_info, root_key, chain->chain_key
);
axolotl::unset(sender_chain[0]);
sender_chain.erase(sender_chain.begin());
}
while (chain->chain_key.index < reader.counter) {
axolotl::SkippedMessageKey & key = *skipped_message_keys.insert();
create_message_keys(chain->chain_key, kdf_info, key.message_key);
key.ratchet_key = chain->ratchet_key;
advance_chain_key(chain->chain_key, chain->chain_key);
}
advance_chain_key(chain->chain_key, chain->chain_key);
return result;
}