2021-01-31 03:54:23 +01:00
|
|
|
from datetime import datetime
|
|
|
|
from os import path
|
2021-02-05 22:20:53 +01:00
|
|
|
import csv, time
|
2021-01-31 03:54:23 +01:00
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.animation as animation
|
|
|
|
|
|
|
|
|
|
|
|
sleep_data = {
|
|
|
|
'heartrate': {
|
|
|
|
'value_name': 'bpm',
|
|
|
|
'periods': [2, 5, 10, 15],
|
|
|
|
'raw_data': [],
|
|
|
|
'averaged_data': [],
|
2021-02-16 05:04:48 +01:00
|
|
|
'last_hr': []
|
2021-01-31 03:54:23 +01:00
|
|
|
},
|
|
|
|
'movement':{
|
|
|
|
'value_name': 'movement',
|
|
|
|
'periods': [10, 30, 60],
|
|
|
|
'raw_data': [],
|
2021-02-05 22:20:53 +01:00
|
|
|
'averaged_data': []
|
2021-01-31 03:54:23 +01:00
|
|
|
}
|
|
|
|
}
|
2021-02-05 22:20:53 +01:00
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
|
|
|
|
tick_seconds = 0.5
|
2021-02-02 08:25:59 +01:00
|
|
|
last_tick_time = None
|
2021-01-31 03:54:23 +01:00
|
|
|
|
2021-02-01 03:02:26 +01:00
|
|
|
datestamp = datetime.now().strftime("%Y_%m_%d")
|
|
|
|
csv_header_name_format = '{}_{}'
|
|
|
|
csv_filename_format = '{}_{}.csv'
|
2021-01-31 03:54:23 +01:00
|
|
|
|
|
|
|
plt.style.use('dark_background')
|
|
|
|
graph_figure = plt.figure()
|
2021-02-02 23:33:41 +01:00
|
|
|
graph_figure.canvas.set_window_title('blesleep')
|
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
graph_axes = graph_figure.add_subplot(1, 1, 1)
|
|
|
|
graph_data = {}
|
|
|
|
|
2021-02-05 22:20:53 +01:00
|
|
|
graph_displaytime_minutes = None
|
|
|
|
|
2021-02-02 08:25:59 +01:00
|
|
|
last_heartrate = 0
|
2021-02-01 03:02:26 +01:00
|
|
|
|
|
|
|
class Average_Gyro_Data():
|
|
|
|
gyro_last_x = 0
|
|
|
|
gyro_last_y = 0
|
|
|
|
gyro_last_z = 0
|
|
|
|
# Each gyro reading from miband4 comes over as a group of three,
|
|
|
|
# each containing x,y,z values. This function summarizes the
|
|
|
|
# values into a single consolidated movement value.
|
|
|
|
def process(self, gyro_data):
|
|
|
|
gyro_movement = 0
|
|
|
|
for gyro_datum in gyro_data:
|
2021-02-05 22:20:53 +01:00
|
|
|
gyro_delta_x = abs(gyro_datum['gyro_raw_x'] - self.gyro_last_x)
|
|
|
|
self.gyro_last_x = gyro_datum['gyro_raw_x']
|
|
|
|
gyro_delta_y = abs(gyro_datum['gyro_raw_y'] - self.gyro_last_y)
|
|
|
|
self.gyro_last_y = gyro_datum['gyro_raw_y']
|
|
|
|
gyro_delta_z = abs(gyro_datum['gyro_raw_z'] - self.gyro_last_z)
|
|
|
|
self.gyro_last_z = gyro_datum['gyro_raw_z']
|
2021-02-01 03:02:26 +01:00
|
|
|
gyro_delta_sum = gyro_delta_x + gyro_delta_y + gyro_delta_z
|
|
|
|
gyro_movement += gyro_delta_sum
|
|
|
|
return gyro_movement
|
|
|
|
|
|
|
|
|
|
|
|
def write_csv(data, name):
|
|
|
|
fieldnames = ['time']
|
|
|
|
for fieldname in data[0]:
|
|
|
|
if fieldname != 'time':
|
|
|
|
fieldnames.append(fieldname)
|
|
|
|
if name == 'raw':
|
|
|
|
name = '{}_{}'.format(name, fieldname)
|
|
|
|
|
|
|
|
csv_filename = csv_filename_format.format(datestamp, name)
|
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
if not path.exists(csv_filename):
|
2021-02-01 03:02:26 +01:00
|
|
|
open_handle = 'w'
|
2021-01-31 03:54:23 +01:00
|
|
|
else:
|
2021-02-01 03:02:26 +01:00
|
|
|
open_handle = 'a'
|
|
|
|
|
|
|
|
with open(csv_filename, open_handle, newline='') as csvfile:
|
|
|
|
csv_writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
|
|
|
if open_handle == 'w':
|
|
|
|
csv_writer.writeheader()
|
|
|
|
if type(data) is list:
|
|
|
|
for row in data:
|
|
|
|
csv_writer.writerow(row)
|
|
|
|
else:
|
2021-01-31 03:54:23 +01:00
|
|
|
csv_writer.writerow(data)
|
|
|
|
|
|
|
|
|
|
|
|
def flush_old_raw_data(tick_time):
|
|
|
|
for data_type in sleep_data:
|
|
|
|
s_data = sleep_data[data_type]
|
|
|
|
periods = s_data['periods']
|
|
|
|
|
|
|
|
cleaned_raw_data = []
|
2021-02-01 03:02:26 +01:00
|
|
|
old_raw_data = []
|
2021-01-30 09:54:56 +01:00
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
for raw_datum in s_data['raw_data']:
|
|
|
|
datum_age = tick_time - raw_datum['time']
|
|
|
|
if datum_age < max(periods):
|
|
|
|
cleaned_raw_data.append(raw_datum)
|
2021-02-01 03:02:26 +01:00
|
|
|
else:
|
|
|
|
old_raw_data.append(raw_datum)
|
2021-01-31 03:54:23 +01:00
|
|
|
|
|
|
|
s_data['raw_data'] = cleaned_raw_data
|
2021-02-01 03:02:26 +01:00
|
|
|
if old_raw_data:
|
|
|
|
write_csv(old_raw_data, 'raw')
|
2021-01-31 03:54:23 +01:00
|
|
|
|
2021-02-02 08:25:59 +01:00
|
|
|
|
2021-02-05 22:20:53 +01:00
|
|
|
def flush_old_graph_data(graph_displaytime_minutes):
|
|
|
|
graph_displaytime_seconds = graph_displaytime_minutes * 60
|
|
|
|
tick_time = time.time()
|
|
|
|
for data_type in sleep_data:
|
|
|
|
s_data = sleep_data[data_type]
|
|
|
|
cleaned_graph_data = []
|
|
|
|
old_graph_data = []
|
|
|
|
for avg_datum in s_data['averaged_data']:
|
|
|
|
datum_age = tick_time - datetime.timestamp(avg_datum['time'])
|
|
|
|
if datum_age < graph_displaytime_seconds:
|
|
|
|
cleaned_graph_data.append(avg_datum)
|
|
|
|
else:
|
|
|
|
old_graph_data.append(avg_datum)
|
|
|
|
s_data['averaged_data'] = cleaned_graph_data
|
|
|
|
|
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
def average_raw_data(tick_time):
|
|
|
|
global last_heartrate
|
|
|
|
timestamp = datetime.fromtimestamp(tick_time)
|
|
|
|
csv_out = {'time': timestamp }
|
|
|
|
|
|
|
|
for data_type in sleep_data:
|
|
|
|
s_data = sleep_data[data_type]
|
|
|
|
period_averages_dict = {'time': timestamp}
|
|
|
|
periods = s_data['periods']
|
|
|
|
value_name = s_data['value_name']
|
|
|
|
|
|
|
|
flush_old_raw_data(tick_time)
|
|
|
|
|
|
|
|
for period_seconds in periods:
|
|
|
|
period_data = []
|
|
|
|
period_averages_dict[period_seconds] = 0
|
|
|
|
for raw_datum in s_data['raw_data']:
|
|
|
|
datum_age_seconds = tick_time - raw_datum['time']
|
|
|
|
if datum_age_seconds < period_seconds:
|
|
|
|
period_data.append(raw_datum[value_name])
|
|
|
|
|
|
|
|
if len(period_data) > 0:
|
|
|
|
period_data_average = sum(period_data) / len(period_data)
|
|
|
|
else:
|
|
|
|
if data_type == "heartrate" and period_seconds == min(periods):
|
|
|
|
period_data_average = last_heartrate
|
|
|
|
else:
|
|
|
|
period_data_average = 0
|
|
|
|
|
|
|
|
period_averages_dict[period_seconds] = zero_to_nan(period_data_average)
|
|
|
|
|
2021-02-01 03:02:26 +01:00
|
|
|
csv_header_field_name = csv_header_name_format.format(data_type, period_seconds)
|
|
|
|
csv_out[csv_header_field_name] = zero_to_nan(period_data_average)
|
2021-01-31 03:54:23 +01:00
|
|
|
|
|
|
|
s_data['averaged_data'].append(period_averages_dict)
|
2021-02-01 03:02:26 +01:00
|
|
|
write_csv([csv_out], 'avg')
|
2021-01-31 03:54:23 +01:00
|
|
|
|
|
|
|
|
2021-02-01 03:02:26 +01:00
|
|
|
def process_gyro_data(gyro_data, tick_time):
|
|
|
|
sleep_move = sleep_data['movement']
|
2021-01-31 03:54:23 +01:00
|
|
|
value_name = sleep_move['value_name']
|
2021-02-01 03:02:26 +01:00
|
|
|
gyro_movement = average_gyro_data.process(gyro_data)
|
2021-02-02 08:25:59 +01:00
|
|
|
#print("Gyro: {}".format(gyro_movement))
|
2021-01-31 03:54:23 +01:00
|
|
|
sleep_move['raw_data'].append({
|
|
|
|
'time': tick_time,
|
|
|
|
value_name: gyro_movement
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
|
|
def process_heartrate_data(heartrate_data, tick_time):
|
2021-02-16 05:04:48 +01:00
|
|
|
last_heartrate_count = 20
|
2021-01-31 03:54:23 +01:00
|
|
|
print("BPM: " + str(heartrate_data))
|
|
|
|
if heartrate_data > 0:
|
|
|
|
value_name = sleep_data['heartrate']['value_name']
|
|
|
|
sleep_data['heartrate']['raw_data'].append({
|
|
|
|
'time': tick_time,
|
|
|
|
value_name: heartrate_data
|
|
|
|
} )
|
|
|
|
|
2021-02-16 05:04:48 +01:00
|
|
|
if len(sleep_data['heartrate']['last_hr']) > last_heartrate_count:
|
|
|
|
sleep_data['heartrate']['last_hr'].pop(0)
|
|
|
|
sleep_data['heartrate']['last_hr'].append(heartrate_data)
|
|
|
|
|
|
|
|
|
|
|
|
def analyze_heartrate(hr_count):
|
|
|
|
# Finds the pct change between the lowest HR in the last $hr_count samples and the current HR
|
|
|
|
pct_heartrate_increase = 0
|
|
|
|
if len(sleep_data['heartrate']['last_hr']) >= hr_count:
|
|
|
|
last_heartrate_list = sleep_data['heartrate']['last_hr'][-hr_count:]
|
|
|
|
last_heartrate_min = min(last_heartrate_list)
|
|
|
|
current_heartrate = last_heartrate_list[-1]
|
|
|
|
pct_heartrate_increase = int((current_heartrate - last_heartrate_min)/last_heartrate_min*100)
|
|
|
|
return pct_heartrate_increase
|
|
|
|
|
2021-02-01 03:02:26 +01:00
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
def zero_to_nan(value):
|
|
|
|
if value == 0:
|
|
|
|
return (float('nan'))
|
|
|
|
return int(value)
|
|
|
|
|
2021-02-01 03:02:26 +01:00
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
def update_graph_data():
|
|
|
|
for data_type in sleep_data:
|
2021-02-05 22:20:53 +01:00
|
|
|
s_data = sleep_data[data_type]
|
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
avg_data = s_data['averaged_data']
|
|
|
|
|
|
|
|
if len(avg_data) > 1:
|
|
|
|
|
2021-02-05 22:20:53 +01:00
|
|
|
g_data = graph_data[data_type]
|
2021-01-31 03:54:23 +01:00
|
|
|
data_periods = s_data['periods']
|
|
|
|
|
|
|
|
starting_index = max([(len(g_data['time']) - 1), 0])
|
|
|
|
ending_index = len(avg_data) - 1
|
|
|
|
|
|
|
|
sleep_data_range = avg_data[starting_index:ending_index]
|
|
|
|
|
|
|
|
for sleep_datum in sleep_data_range:
|
|
|
|
g_data['time'].append(sleep_datum['time'])
|
|
|
|
for period in data_periods:
|
|
|
|
if g_data['data'][period] != 'nan':
|
|
|
|
g_data['data'][period].append(sleep_datum[period])
|
|
|
|
|
2021-02-01 03:02:26 +01:00
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
def init_graph_data():
|
|
|
|
for data_type in sleep_data:
|
|
|
|
data_periods = sleep_data[data_type]['periods']
|
|
|
|
graph_data[data_type] = {
|
|
|
|
'time': [],
|
|
|
|
'data': {}
|
|
|
|
}
|
|
|
|
for period in data_periods:
|
|
|
|
graph_data[data_type]['data'][period] = []
|
|
|
|
|
|
|
|
|
|
|
|
def graph_animation(i):
|
2021-02-05 22:20:53 +01:00
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
if len(graph_data) == 0:
|
|
|
|
init_graph_data()
|
|
|
|
|
2021-02-05 22:20:53 +01:00
|
|
|
flush_old_graph_data(graph_displaytime_minutes)
|
2021-01-31 03:54:23 +01:00
|
|
|
update_graph_data()
|
|
|
|
|
|
|
|
for data_type in graph_data:
|
|
|
|
if len(graph_data[data_type]['time']) > 0:
|
|
|
|
graph_axes.clear()
|
|
|
|
break
|
|
|
|
|
2021-02-05 22:20:53 +01:00
|
|
|
plotflag = False
|
2021-01-31 03:54:23 +01:00
|
|
|
for data_type in sleep_data:
|
|
|
|
s_data = sleep_data[data_type]
|
|
|
|
g_data = graph_data[data_type]
|
|
|
|
if len(g_data['time']) > 0:
|
|
|
|
plotflag = True
|
|
|
|
data_periods = sleep_data[data_type]['periods']
|
|
|
|
for period in data_periods:
|
|
|
|
axis_label = "{} {} sec".format(s_data['value_name'], period)
|
|
|
|
graph_axes.plot(g_data['time'],
|
|
|
|
g_data['data'][period],
|
|
|
|
label=axis_label)
|
|
|
|
|
|
|
|
if plotflag:
|
|
|
|
plt.legend()
|
|
|
|
|
2021-02-01 03:02:26 +01:00
|
|
|
|
2021-02-05 22:20:53 +01:00
|
|
|
def init_graph(graph_displaytime_mins=60, maximize=False):
|
|
|
|
global graph_displaytime_minutes
|
|
|
|
graph_displaytime_minutes = graph_displaytime_mins
|
2021-02-02 23:40:02 +01:00
|
|
|
if maximize:
|
|
|
|
figure_manager = plt.get_current_fig_manager()
|
|
|
|
figure_manager.full_screen_toggle()
|
2021-02-05 22:20:53 +01:00
|
|
|
|
2021-01-31 03:54:23 +01:00
|
|
|
ani = animation.FuncAnimation(graph_figure, graph_animation, interval=1000)
|
|
|
|
plt.show()
|
2021-02-01 03:02:26 +01:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == 'sleepdata':
|
|
|
|
average_gyro_data = Average_Gyro_Data()
|