Split data output into average and individual files for each biometric, moved gyro averaging into its own class

This commit is contained in:
NateSchoolfield 2021-01-31 18:02:26 -08:00
parent 093e7a5006
commit 4dfd194483
4 changed files with 91 additions and 54 deletions

21
2021_01_31_avg Normal file
View File

@ -0,0 +1,21 @@
time,heartrate_2,heartrate_5,heartrate_10,heartrate_15,movement_10,movement_30,movement_60
2021-01-31 16:04:05.010676,nan,nan,nan,nan,48,48,48
2021-01-31 16:04:35.476006,79,79,79,79,16,16,17
2021-01-31 16:04:36.241533,79,79,79,79,16,16,17
2021-01-31 16:04:37.005988,79,79,79,79,16,16,17
2021-01-31 16:04:37.816041,nan,79,79,79,16,16,17
2021-01-31 16:04:38.625689,nan,79,79,79,16,16,18
2021-01-31 16:04:39.436024,nan,79,79,79,16,16,17
2021-01-31 16:04:40.246131,nan,nan,79,79,16,16,17
2021-01-31 16:04:41.011184,nan,nan,79,79,16,16,17
2021-01-31 16:04:41.821067,nan,nan,79,79,16,16,17
2021-01-31 16:04:42.631347,nan,nan,79,79,16,16,17
2021-01-31 16:04:43.441469,nan,nan,79,79,16,16,17
2021-01-31 16:04:44.251060,nan,nan,79,79,16,16,17
2021-01-31 16:04:45.016751,nan,nan,79,79,16,16,17
2021-01-31 16:04:45.825831,nan,nan,nan,79,16,16,17
2021-01-31 16:04:46.680977,nan,nan,nan,79,16,16,17
2021-01-31 16:04:47.446140,nan,nan,nan,79,15,16,17
2021-01-31 16:04:48.210846,nan,nan,nan,79,15,16,17
2021-01-31 16:04:49.021353,nan,nan,nan,79,15,16,17
2021-01-31 16:04:49.831218,nan,nan,nan,79,15,16,17

1
2021_01_31_raw Normal file
View File

@ -0,0 +1 @@
time,heartrate_2,heartrate_5,heartrate_10,heartrate_15,movement_10,movement_30,movement_60

View File

@ -114,8 +114,6 @@ def vibrate_random(duration):
band.vibrate(vibrate_ms) band.vibrate(vibrate_ms)
time.sleep(vibro_delay) time.sleep(vibro_delay)
def sleep_monitor_callback(data): def sleep_monitor_callback(data):
tick_time = time.time() tick_time = time.time()
if not sleepdata.last_tick_time: if not sleepdata.last_tick_time:
@ -123,7 +121,7 @@ def sleep_monitor_callback(data):
process_data(data, tick_time) process_data(data, tick_time)
average_data(tick_time) average_data(tick_time)
def connect(mac_filename, auth_key_filename): def connect():
global band global band
success = False success = False
timeout = 3 timeout = 3
@ -179,7 +177,7 @@ def vibrate_rolling():
band.vibrate(x) band.vibrate(x)
if __name__ == "__main__": if __name__ == "__main__":
connect(mac_filename, auth_key_filename) connect()
threading.Thread(target=start_data_pull).start() threading.Thread(target=start_data_pull).start()
threading.Thread(target=timed_buzzing, args=([buzz_delay, 15])).start() threading.Thread(target=timed_buzzing, args=([buzz_delay, 15])).start()
#sleepdata.init_graph() #sleepdata.init_graph()

View File

@ -1,14 +1,10 @@
from datetime import datetime from datetime import datetime
from os import path from os import path
import csv import csv
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import matplotlib.animation as animation import matplotlib.animation as animation
#Todo: separate graph animation from data averaging
#Todo: log raw data separately from average data
sleep_data = { sleep_data = {
'heartrate': { 'heartrate': {
@ -34,14 +30,9 @@ last_heartrate = 0
last_tick_time = None last_tick_time = None
tick_seconds = 0.5 tick_seconds = 0.5
csv_filename = "sleep_data.csv" datestamp = datetime.now().strftime("%Y_%m_%d")
csv_header_name_format = '{}_{}'
fieldnames = ['time'] csv_filename_format = '{}_{}.csv'
for data_type in sleep_data:
periods = sleep_data[data_type]['periods']
for period in periods:
fieldnames.append(data_type + str(period))
plt.style.use('dark_background') plt.style.use('dark_background')
graph_figure = plt.figure() graph_figure = plt.figure()
@ -49,17 +40,52 @@ graph_axes = graph_figure.add_subplot(1, 1, 1)
graph_data = {} graph_data = {}
def write_csv(data):
global fieldnames class Average_Gyro_Data():
global csv_filename gyro_last_x = 0
gyro_last_y = 0
gyro_last_z = 0
# Each gyro reading from miband4 comes over as a group of three,
# each containing x,y,z values. This function summarizes the
# values into a single consolidated movement value.
def process(self, gyro_data):
gyro_movement = 0
for gyro_datum in gyro_data:
gyro_delta_x = abs(gyro_datum['x'] - self.gyro_last_x)
self.gyro_last_x = gyro_datum['x']
gyro_delta_y = abs(gyro_datum['y'] - self.gyro_last_y)
self.gyro_last_y = gyro_datum['y']
gyro_delta_z = abs(gyro_datum['z'] - self.gyro_last_z)
self.gyro_last_z = gyro_datum['z']
gyro_delta_sum = gyro_delta_x + gyro_delta_y + gyro_delta_z
gyro_movement += gyro_delta_sum
return gyro_movement
def write_csv(data, name):
fieldnames = ['time']
for fieldname in data[0]:
if fieldname != 'time':
fieldnames.append(fieldname)
if name == 'raw':
name = '{}_{}'.format(name, fieldname)
csv_filename = csv_filename_format.format(datestamp, name)
if not path.exists(csv_filename): if not path.exists(csv_filename):
with open(csv_filename, 'w', newline='') as csvfile: open_handle = 'w'
csv_writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
csv_writer.writeheader()
csv_writer.writerow(data)
else: else:
with open(csv_filename, 'a', newline='') as csvfile: open_handle = 'a'
csv_writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
with open(csv_filename, open_handle, newline='') as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if open_handle == 'w':
csv_writer.writeheader()
if type(data) is list:
for row in data:
csv_writer.writerow(row)
else:
csv_writer.writerow(data) csv_writer.writerow(data)
@ -69,13 +95,18 @@ def flush_old_raw_data(tick_time):
periods = s_data['periods'] periods = s_data['periods']
cleaned_raw_data = [] cleaned_raw_data = []
old_raw_data = []
for raw_datum in s_data['raw_data']: for raw_datum in s_data['raw_data']:
datum_age = tick_time - raw_datum['time'] datum_age = tick_time - raw_datum['time']
if datum_age < max(periods): if datum_age < max(periods):
cleaned_raw_data.append(raw_datum) cleaned_raw_data.append(raw_datum)
else:
old_raw_data.append(raw_datum)
s_data['raw_data'] = cleaned_raw_data s_data['raw_data'] = cleaned_raw_data
if old_raw_data:
write_csv(old_raw_data, 'raw')
def average_raw_data(tick_time): def average_raw_data(tick_time):
global last_heartrate global last_heartrate
@ -101,8 +132,6 @@ def average_raw_data(tick_time):
if len(period_data) > 0: if len(period_data) > 0:
period_data_average = sum(period_data) / len(period_data) period_data_average = sum(period_data) / len(period_data)
else: else:
print("({}) Period data empty: {}".format(data_type,
period_seconds))
if data_type == "heartrate" and period_seconds == min(periods): if data_type == "heartrate" and period_seconds == min(periods):
period_data_average = last_heartrate period_data_average = last_heartrate
else: else:
@ -110,38 +139,19 @@ def average_raw_data(tick_time):
period_averages_dict[period_seconds] = zero_to_nan(period_data_average) period_averages_dict[period_seconds] = zero_to_nan(period_data_average)
csv_out[data_type + str(period_seconds)] = zero_to_nan(period_data_average) csv_header_field_name = csv_header_name_format.format(data_type, period_seconds)
csv_out[csv_header_field_name] = zero_to_nan(period_data_average)
s_data['averaged_data'].append(period_averages_dict) s_data['averaged_data'].append(period_averages_dict)
write_csv(csv_out)
write_csv([csv_out], 'avg')
def process_gyro_data(gyro_data, tick_time): def process_gyro_data(gyro_data, tick_time):
# Each gyro reading from miband4 comes over as a group of three,
# each containing x,y,z values. This function summarizes the
# values into a single consolidated movement value.
sleep_move = sleep_data['movement'] sleep_move = sleep_data['movement']
sleep_workspace = sleep_move['workspace']
gyro_last_x = sleep_workspace['gyro_last_x']
gyro_last_y = sleep_workspace['gyro_last_y']
gyro_last_z = sleep_workspace['gyro_last_z']
value_name = sleep_move['value_name'] value_name = sleep_move['value_name']
gyro_movement = 0 gyro_movement = average_gyro_data.process(gyro_data)
for gyro_datum in gyro_data: print("Gyro: {}".format(gyro_movement))
gyro_delta_x = abs(gyro_datum['x'] - gyro_last_x)
gyro_last_x = gyro_datum['x']
gyro_delta_y = abs(gyro_datum['y'] - gyro_last_y)
gyro_last_y = gyro_datum['y']
gyro_delta_z = abs(gyro_datum['z'] - gyro_last_z)
gyro_last_z = gyro_datum['z']
gyro_delta_sum = gyro_delta_x + gyro_delta_y + gyro_delta_z
gyro_movement += gyro_delta_sum
sleep_workspace['gyro_last_x'] = gyro_last_x
sleep_workspace['gyro_last_y'] = gyro_last_y
sleep_workspace['gyro_last_z'] = gyro_last_z
sleep_move['raw_data'].append({ sleep_move['raw_data'].append({
'time': tick_time, 'time': tick_time,
value_name: gyro_movement value_name: gyro_movement
@ -157,11 +167,13 @@ def process_heartrate_data(heartrate_data, tick_time):
value_name: heartrate_data value_name: heartrate_data
} ) } )
def zero_to_nan(value): def zero_to_nan(value):
if value == 0: if value == 0:
return (float('nan')) return (float('nan'))
return int(value) return int(value)
def update_graph_data(): def update_graph_data():
for data_type in sleep_data: for data_type in sleep_data:
s_data = sleep_data[data_type] # Re-referenced to shorten name s_data = sleep_data[data_type] # Re-referenced to shorten name
@ -175,7 +187,6 @@ def update_graph_data():
starting_index = max([(len(g_data['time']) - 1), 0]) starting_index = max([(len(g_data['time']) - 1), 0])
ending_index = len(avg_data) - 1 ending_index = len(avg_data) - 1
# Re-referenced to shorten name
sleep_data_range = avg_data[starting_index:ending_index] sleep_data_range = avg_data[starting_index:ending_index]
for sleep_datum in sleep_data_range: for sleep_datum in sleep_data_range:
@ -184,6 +195,7 @@ def update_graph_data():
if g_data['data'][period] != 'nan': if g_data['data'][period] != 'nan':
g_data['data'][period].append(sleep_datum[period]) g_data['data'][period].append(sleep_datum[period])
def init_graph_data(): def init_graph_data():
for data_type in sleep_data: for data_type in sleep_data:
data_periods = sleep_data[data_type]['periods'] data_periods = sleep_data[data_type]['periods']
@ -225,6 +237,11 @@ def graph_animation(i):
if plotflag: if plotflag:
plt.legend() plt.legend()
def init_graph(): def init_graph():
ani = animation.FuncAnimation(graph_figure, graph_animation, interval=1000) ani = animation.FuncAnimation(graph_figure, graph_animation, interval=1000)
plt.show() plt.show()
if __name__ == 'sleepdata':
average_gyro_data = Average_Gyro_Data()