Code review and PEP8 clean-ups

- PEP8 formating clean-up
- bluesleep.py: Applied re-use of dict objects to variables for
     readability/PEP8.
- bluesleep.py: Updated for loops on items method to keys method as
     value is unused.
- bluesleep.py::get_auth_key: Refactor for readability/PEP8.
- bluesleep.py::average_raw_data: Simplified code and str formatting.
- bluesleep.py::sleep_monitor_callback: Pulled `data[0]` tests to
     if-elif.
- bluesleep.py::connect: Removal of `break` and `continue`, 
     `initialize()` returning true will exit the loop.  No need to break
     or continue the loop from within a try-except.
- bluesleep.py::connect: Removal of magic value on.
- bluesleep.py::graph_animation: Updated axis formating
- miband.py: Reformat imports
This commit is contained in:
Rob MacKinnon 2021-01-25 08:53:45 -08:00
parent 28d4f5c26a
commit 5e6bb15d1c
2 changed files with 102 additions and 69 deletions

View File

@ -51,7 +51,7 @@ last_tick_time = None
tick_seconds = 0.5
fieldnames = ['time']
for data_type, _ in sleep_data.items():
for data_type in sleep_data:
periods = sleep_data[data_type]['periods']
for period in periods:
fieldnames.append(data_type + str(period))
@ -65,12 +65,12 @@ def write_csv(data):
global csv_filename
if not path.exists(csv_filename):
with open(csv_filename, 'w', newline='') as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
csv_writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
csv_writer.writeheader()
csv_writer.writerow(data)
else:
with open(csv_filename, 'a', newline='') as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
csv_writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
csv_writer.writerow(data)
@ -78,14 +78,15 @@ def get_mac_address(filename):
mac_regex_pattern = re.compile(r'([0-9a-fA-F]{2}(?::[0-9a-fA-F]{2}){5})')
try:
with open(filename, "r") as f:
regex_match_from_file = re.search(mac_regex_pattern, f.read().strip())
if regex_match_from_file:
MAC_ADDR = regex_match_from_file[0]
hwaddr_search = re.search(mac_regex_pattern, f.read().strip())
if hwaddr_search:
MAC_ADDR = hwaddr_search[0]
else:
print ("No valid MAC address found in " + str(filename))
print ("No valid MAC address found in {}".format(filename))
exit(1)
except FileNotFoundError:
print ("MAC file not found: " + filename)
print ("MAC file not found: {}".format(filename))
exit(1)
return MAC_ADDR
@ -94,14 +95,14 @@ def get_auth_key(filename):
authkey_regex_pattern = re.compile(r'([0-9a-fA-F]){32}')
try:
with open(filename, "r") as f:
regex_match_from_file = re.search(authkey_regex_pattern, f.read().strip())
if regex_match_from_file:
AUTH_KEY = bytes.fromhex(regex_match_from_file[0])
key_search = re.search(authkey_regex_pattern, f.read().strip())
if key_search:
AUTH_KEY = bytes.fromhex(key_search[0])
else:
print ("No valid auth key found in " + str(filename))
print ("No valid auth key found in {}".format(filename))
exit(1)
except FileNotFoundError:
print ("Auth key file not found: " + filename)
print ("Auth key file not found: {}".format(filename))
exit(1)
return AUTH_KEY
@ -110,21 +111,28 @@ def process_heartrate_data(heartrate_data, tick_time):
print("BPM: " + str(heartrate_data))
if heartrate_data > 0:
value_name = sleep_data['heartrate']['value_name']
sleep_data['heartrate']['raw_data'].append({ 'time': tick_time, value_name: heartrate_data } )
sleep_data['heartrate']['raw_data'].append({
'time': tick_time,
value_name: heartrate_data
} )
def process_gyro_data(gyro_data, tick_time):
# Each gyro reading from miband4 comes over as a group of three, each containing x,y,z values
# This function summarizes the values into a single consolidated movement value
# Each gyro reading from miband4 comes over as a group of three,
# each containing x,y,z values. This function summarizes the
# values into a single consolidated movement value.
global sleep_data
gyro_last_x = sleep_data['movement']['workspace']['gyro_last_x']
gyro_last_y = sleep_data['movement']['workspace']['gyro_last_y']
gyro_last_z = sleep_data['movement']['workspace']['gyro_last_z']
value_name = sleep_data['movement']['value_name']
sleep_move = sleep_data['movement']
sleep_workspace = sleep_move['workspace']
gyro_last_x = sleep_workspace['gyro_last_x']
gyro_last_y = sleep_workspace['gyro_last_y']
gyro_last_z = sleep_workspace['gyro_last_z']
value_name = sleep_move['value_name']
gyro_movement = 0
for gyro_datum in gyro_data:
for gyro_datum in gyro_data:
gyro_delta_x = abs(gyro_datum['x'] - gyro_last_x)
gyro_last_x = gyro_datum['x']
gyro_delta_y = abs(gyro_datum['y'] - gyro_last_y)
@ -134,27 +142,31 @@ def process_gyro_data(gyro_data, tick_time):
gyro_delta_sum = gyro_delta_x + gyro_delta_y + gyro_delta_z
gyro_movement += gyro_delta_sum
sleep_data['movement']['workspace']['gyro_last_x'] = gyro_last_x
sleep_data['movement']['workspace']['gyro_last_y'] = gyro_last_y
sleep_data['movement']['workspace']['gyro_last_z'] = gyro_last_z
sleep_workspace['gyro_last_x'] = gyro_last_x
sleep_workspace['gyro_last_y'] = gyro_last_y
sleep_workspace['gyro_last_z'] = gyro_last_z
sleep_data['movement']['raw_data'].append({ 'time': tick_time, value_name: gyro_movement } )
sleep_move['raw_data'].append({
'time': tick_time,
value_name: gyro_movement
})
def flush_old_raw_data(tick_time):
global sleep_data
for data_type, _ in sleep_data.items():
periods = sleep_data[data_type]['periods']
for data_type in sleep_data:
s_datum = sleep_data[data_type]
periods = s_datum['periods']
cleaned_raw_data = []
for raw_datum in sleep_data[data_type]['raw_data']:
for raw_datum in s_datum['raw_data']:
datum_age = tick_time - raw_datum['time']
if datum_age < max(periods):
cleaned_raw_data.append(raw_datum)
sleep_data[data_type]['raw_data'] = cleaned_raw_data
s_datum['raw_data'] = cleaned_raw_data
def average_raw_data(tick_time):
@ -163,18 +175,18 @@ def average_raw_data(tick_time):
timestamp = datetime.fromtimestamp(tick_time)
csv_out = {'time': timestamp }
for data_type, _ in sleep_data.items():
period_averages_dict = {}
period_averages_dict['time'] = timestamp
periods = sleep_data[data_type]['periods']
value_name = sleep_data[data_type]['value_name']
for data_type in sleep_data:
s_datum = sleep_data[data_type]
period_averages_dict = {'time': timestamp}
periods = s_datum['periods']
value_name = s_datum['value_name']
flush_old_raw_data(tick_time)
for period_seconds in periods:
period_data = []
period_averages_dict[period_seconds] = 0
for raw_datum in sleep_data[data_type]['raw_data']:
for raw_datum in s_datum['raw_data']:
datum_age_seconds = tick_time - raw_datum['time']
if datum_age_seconds < period_seconds:
period_data.append(raw_datum[value_name])
@ -182,22 +194,22 @@ def average_raw_data(tick_time):
if len(period_data) > 0:
period_data_average = sum(period_data) / len(period_data)
else:
print ("(" + data_type + ") Period data empty: " + str(period_seconds))
print("({}) Period data empty: {}".format(data_type,
period_seconds))
period_data_average = 0
period_averages_dict[period_seconds] = zero_to_nan(period_data_average)
csv_out[data_type + str(period_seconds)] = zero_to_nan(period_data_average)
sleep_data[data_type]['averaged_data'].append(period_averages_dict)
s_datum['averaged_data'].append(period_averages_dict)
write_csv(csv_out)
def zero_to_nan(value):
if value == 0:
return (float('nan'))
else:
return int(value)
return int(value)
def sleep_monitor_callback(data):
@ -210,8 +222,7 @@ def sleep_monitor_callback(data):
if data[0] == "GYRO":
process_gyro_data(data[1], tick_time)
if data[0] == "HR":
elif data[0] == "HR":
process_heartrate_data(data[1], tick_time)
if (tick_time - last_tick_time) >= tick_seconds:
@ -220,32 +231,40 @@ def sleep_monitor_callback(data):
def init_graph_data():
for data_type, _ in sleep_data.items():
for data_type in sleep_data:
data_periods = sleep_data[data_type]['periods']
graph_data[data_type] = {
'time': [],
'data': {}
}
'time': [],
'data': {}
}
for period in data_periods:
graph_data[data_type]['data'][period] = []
def update_graph_data():
global sleep_data
global graph_data
for data_type, _ in sleep_data.items():
if len(sleep_data[data_type]['averaged_data']) > 1:
data_periods = sleep_data[data_type]['periods']
for data_type in sleep_data:
s_datum = sleep_data[data_type] # Re-referenced to shorten name
avg_datum = s_datum['averaged_data']
starting_index = max([(len(graph_data[data_type]['time']) - 1), 0])
ending_index = len(sleep_data[data_type]['averaged_data']) - 1
if len(avg_datum) > 1:
for sleep_datum in sleep_data[data_type]['averaged_data'][starting_index:ending_index]:
graph_data[data_type]['time'].append(sleep_datum['time'])
g_datum = graph_data[data_type] # Re-referenced to short name
data_periods = s_datum['periods']
starting_index = max([(len(g_dataum['time']) - 1), 0])
ending_index = len(avg_datum) - 1
# Re-referenced to shorten name
sleep_data_range = avg_datum[starting_index:ending_index]
for sleep_datum in sleep_data_range:
g_datum['time'].append(sleep_datum['time'])
for period in data_periods:
if graph_data[data_type]['data'][period] != 'nan':
graph_data[data_type]['data'][period].append(sleep_datum[period])
if g_datum['data'][period] != 'nan':
g_datum['data'][period].append(sleep_datum[period])
def graph_animation(i):
@ -259,28 +278,35 @@ def graph_animation(i):
update_graph_data()
for data_type, _ in graph_data.items():
for data_type in graph_data:
if len(graph_data[data_type]['time']) > 0:
graph_axes.clear()
break
for data_type, _ in sleep_data.items():
if len(graph_data[data_type]['time']) > 0:
for data_type in sleep_data:
s_datum = sleep_data[data_type]
g_datum = graph_data[data_type]
if len(g_datum['time']) > 0:
plotflag = True
data_periods = sleep_data[data_type]['periods']
for period in data_periods:
axis_label = sleep_data[data_type]['value_name'] + " " + str(period) + "sec"
graph_axes.plot(graph_data[data_type]['time'], graph_data[data_type]['data'][period], label=axis_label)
axis_label = "{} {} sec".format(s_datum['value_name'], period)
graph_axes.plot(g_datum['time'],
g_datum['data'][period],
label=axis_label)
if plotflag:
plt.legend()
def connect():
global band
global mac_filename
global auth_key_filename
success = False
timeout = 3
msg = 'Connection to the MIBand failed. Trying again in {} seconds'
MAC_ADDR = get_mac_address(mac_filename)
AUTH_KEY = get_auth_key(auth_key_filename)
@ -289,15 +315,14 @@ def connect():
try:
band = miband(MAC_ADDR, AUTH_KEY, debug=True)
success = band.initialize()
break
except BTLEDisconnectError:
print('Connection to the MIBand failed. Trying out again in 3 seconds')
time.sleep(3)
continue
print(msg.format(timeout))
time.sleep(timeout)
except KeyboardInterrupt:
print("\nExit.")
exit()
def start_data_pull():
global band
@ -307,7 +332,7 @@ def start_data_pull():
except BTLEDisconnectError:
band.gyro_started_flag = False
connect()
if __name__ == "__main__":
connect()

View File

@ -1,13 +1,20 @@
import sys,os,time
import sys, os, time
import logging
from bluepy.btle import Peripheral, DefaultDelegate, ADDR_TYPE_RANDOM,ADDR_TYPE_PUBLIC, BTLEException, BTLEDisconnectError
from constants import UUIDS, AUTH_STATES, ALERT_TYPES, QUEUE_TYPES, MUSICSTATE
import struct
from bluepy.btle import (
Peripheral, DefaultDelegate,
ADDR_TYPE_RANDOM, ADDR_TYPE_PUBLIC,
BTLEException, BTLEDisconnectError
)
from datetime import datetime, timedelta
from Crypto.Cipher import AES
from datetime import datetime
from constants import (
UUIDS, AUTH_STATES, ALERT_TYPES, QUEUE_TYPES, MUSICSTATE
)
try:
from Queue import Queue, Empty
except ImportError:
@ -96,6 +103,7 @@ class Delegate(DefaultDelegate):
else:
print ("Unhandled handle: " + str(hnd) + " | Data: " + str(data))
class miband(Peripheral):
_send_rnd_cmd = struct.pack('<2s', b'\x02\x00')
_send_enc_key = struct.pack('<2s', b'\x03\x00')