Start tracking changes

This commit is contained in:
Axel Wagner 2010-07-22 01:15:18 +02:00
commit 02df973564
16 changed files with 1607 additions and 0 deletions

1
i3bar/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
i3bar

18
i3bar/Makefile Normal file
View File

@ -0,0 +1,18 @@
TOPDIR=$(shell pwd)
include $(TOPDIR)/common.mk
FILES:=$(wildcard src/*.c)
FILES:=$(FILES:.c=.o)
HEADERS:=$(wildcard include/*.h)
all: ${FILES}
echo "LINK"
$(CC) -o i3bar ${FILES} ${LDFLAGS}
src/%.o: src/%.c ${HEADERS}
echo "CC $<"
$(CC) $(CFLAGS) -c -o $@ $<
clean:
rm src/*.o

9
i3bar/common.mk Normal file
View File

@ -0,0 +1,9 @@
CFLAGS += -Wall
CFLAGS += -pipe
CFLAGS += -Iinclude
CFLAGS += -g
LDFLAGS += -lev
LDFLAGS += -lyajl
LDFLAGS += -lxcb
LDFLAGS += -lxcb-atom
.SILENT:

19
i3bar/include/common.h Normal file
View File

@ -0,0 +1,19 @@
#ifndef COMMON_H_
#define COMMON_H_
#include "util.h"
typedef int bool;
typedef struct rect_t rect;
struct rect_t {
int x;
int y;
int w;
int h;
};
struct ev_loop* main_loop;
#endif

14
i3bar/include/ipc.h Normal file
View File

@ -0,0 +1,14 @@
#ifndef IPC_H_
#define IPC_H_
#include <ev.h>
ev_io* i3_events;
ev_io* outputs_watcher;
ev_io* workspaces_watcher;
void init_i3(const char* socket_path);
void get_outputs_json(void (*callback)(char*, void*), void* params);
void get_workspaces_json(void (*callback)(char*, void*), void* params);
#endif

27
i3bar/include/outputs.h Normal file
View File

@ -0,0 +1,27 @@
#ifndef OUTPUTS_H_
#define OUTPUTS_H_
#include "common.h"
#include <xcb/xcb.h>
typedef struct i3_output_t i3_output;
i3_output* outputs;
void refresh_outputs();
void free_outputs();
i3_output* get_output_by_name(char* name);
struct i3_output_t {
char* name;
bool active;
int ws;
rect rect;
xcb_window_t win;
xcb_gcontext_t gctx;
i3_output* next;
};
#endif

527
i3bar/include/queue.h Normal file
View File

@ -0,0 +1,527 @@
/* $OpenBSD: queue.h,v 1.1 2007/10/26 03:14:08 niallo Exp $ */
/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)queue.h 8.5 (Berkeley) 8/20/94
*/
#ifndef _SYS_QUEUE_H_
#define _SYS_QUEUE_H_
/*
* This file defines five types of data structures: singly-linked lists,
* lists, simple queues, tail queues, and circular queues.
*
*
* A singly-linked list is headed by a single forward pointer. The elements
* are singly linked for minimum space and pointer manipulation overhead at
* the expense of O(n) removal for arbitrary elements. New elements can be
* added to the list after an existing element or at the head of the list.
* Elements being removed from the head of the list should use the explicit
* macro for this purpose for optimum efficiency. A singly-linked list may
* only be traversed in the forward direction. Singly-linked lists are ideal
* for applications with large datasets and few or no removals or for
* implementing a LIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
* so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before
* or after an existing element or at the head of the list. A list
* may only be traversed in the forward direction.
*
* A simple queue is headed by a pair of pointers, one the head of the
* list and the other to the tail of the list. The elements are singly
* linked to save space, so elements can only be removed from the
* head of the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the
* list. A simple queue may only be traversed in the forward direction.
*
* A tail queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or
* after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction.
*
* A circle queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the list.
* A circle queue may be traversed in either direction, but has a more
* complex end of list detection.
*
* For details on the use of these macros, see the queue(3) manual page.
*/
#if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
#define _Q_INVALIDATE(a) (a) = ((void *)-1)
#else
#define _Q_INVALIDATE(a)
#endif
/*
* Singly-linked List definitions.
*/
#define SLIST_HEAD(name, type) \
struct name { \
struct type *slh_first; /* first element */ \
}
#define SLIST_HEAD_INITIALIZER(head) \
{ NULL }
#define SLIST_ENTRY(type) \
struct { \
struct type *sle_next; /* next element */ \
}
/*
* Singly-linked List access methods.
*/
#define SLIST_FIRST(head) ((head)->slh_first)
#define SLIST_END(head) NULL
#define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
#define SLIST_FOREACH(var, head, field) \
for((var) = SLIST_FIRST(head); \
(var) != SLIST_END(head); \
(var) = SLIST_NEXT(var, field))
#define SLIST_FOREACH_PREVPTR(var, varp, head, field) \
for ((varp) = &SLIST_FIRST((head)); \
((var) = *(varp)) != SLIST_END(head); \
(varp) = &SLIST_NEXT((var), field))
/*
* Singly-linked List functions.
*/
#define SLIST_INIT(head) { \
SLIST_FIRST(head) = SLIST_END(head); \
}
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
(elm)->field.sle_next = (slistelm)->field.sle_next; \
(slistelm)->field.sle_next = (elm); \
} while (0)
#define SLIST_INSERT_HEAD(head, elm, field) do { \
(elm)->field.sle_next = (head)->slh_first; \
(head)->slh_first = (elm); \
} while (0)
#define SLIST_REMOVE_NEXT(head, elm, field) do { \
(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
} while (0)
#define SLIST_REMOVE_HEAD(head, field) do { \
(head)->slh_first = (head)->slh_first->field.sle_next; \
} while (0)
#define SLIST_REMOVE(head, elm, type, field) do { \
if ((head)->slh_first == (elm)) { \
SLIST_REMOVE_HEAD((head), field); \
} else { \
struct type *curelm = (head)->slh_first; \
\
while (curelm->field.sle_next != (elm)) \
curelm = curelm->field.sle_next; \
curelm->field.sle_next = \
curelm->field.sle_next->field.sle_next; \
_Q_INVALIDATE((elm)->field.sle_next); \
} \
} while (0)
/*
* List definitions.
*/
#define LIST_HEAD(name, type) \
struct name { \
struct type *lh_first; /* first element */ \
}
#define LIST_HEAD_INITIALIZER(head) \
{ NULL }
#define LIST_ENTRY(type) \
struct { \
struct type *le_next; /* next element */ \
struct type **le_prev; /* address of previous next element */ \
}
/*
* List access methods
*/
#define LIST_FIRST(head) ((head)->lh_first)
#define LIST_END(head) NULL
#define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
#define LIST_NEXT(elm, field) ((elm)->field.le_next)
#define LIST_FOREACH(var, head, field) \
for((var) = LIST_FIRST(head); \
(var)!= LIST_END(head); \
(var) = LIST_NEXT(var, field))
/*
* List functions.
*/
#define LIST_INIT(head) do { \
LIST_FIRST(head) = LIST_END(head); \
} while (0)
#define LIST_INSERT_AFTER(listelm, elm, field) do { \
if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
(listelm)->field.le_next->field.le_prev = \
&(elm)->field.le_next; \
(listelm)->field.le_next = (elm); \
(elm)->field.le_prev = &(listelm)->field.le_next; \
} while (0)
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.le_prev = (listelm)->field.le_prev; \
(elm)->field.le_next = (listelm); \
*(listelm)->field.le_prev = (elm); \
(listelm)->field.le_prev = &(elm)->field.le_next; \
} while (0)
#define LIST_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.le_next = (head)->lh_first) != NULL) \
(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
(head)->lh_first = (elm); \
(elm)->field.le_prev = &(head)->lh_first; \
} while (0)
#define LIST_REMOVE(elm, field) do { \
if ((elm)->field.le_next != NULL) \
(elm)->field.le_next->field.le_prev = \
(elm)->field.le_prev; \
*(elm)->field.le_prev = (elm)->field.le_next; \
_Q_INVALIDATE((elm)->field.le_prev); \
_Q_INVALIDATE((elm)->field.le_next); \
} while (0)
#define LIST_REPLACE(elm, elm2, field) do { \
if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
(elm2)->field.le_next->field.le_prev = \
&(elm2)->field.le_next; \
(elm2)->field.le_prev = (elm)->field.le_prev; \
*(elm2)->field.le_prev = (elm2); \
_Q_INVALIDATE((elm)->field.le_prev); \
_Q_INVALIDATE((elm)->field.le_next); \
} while (0)
/*
* Simple queue definitions.
*/
#define SIMPLEQ_HEAD(name, type) \
struct name { \
struct type *sqh_first; /* first element */ \
struct type **sqh_last; /* addr of last next element */ \
}
#define SIMPLEQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).sqh_first }
#define SIMPLEQ_ENTRY(type) \
struct { \
struct type *sqe_next; /* next element */ \
}
/*
* Simple queue access methods.
*/
#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
#define SIMPLEQ_END(head) NULL
#define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
#define SIMPLEQ_FOREACH(var, head, field) \
for((var) = SIMPLEQ_FIRST(head); \
(var) != SIMPLEQ_END(head); \
(var) = SIMPLEQ_NEXT(var, field))
/*
* Simple queue functions.
*/
#define SIMPLEQ_INIT(head) do { \
(head)->sqh_first = NULL; \
(head)->sqh_last = &(head)->sqh_first; \
} while (0)
#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
(head)->sqh_last = &(elm)->field.sqe_next; \
(head)->sqh_first = (elm); \
} while (0)
#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.sqe_next = NULL; \
*(head)->sqh_last = (elm); \
(head)->sqh_last = &(elm)->field.sqe_next; \
} while (0)
#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
(head)->sqh_last = &(elm)->field.sqe_next; \
(listelm)->field.sqe_next = (elm); \
} while (0)
#define SIMPLEQ_REMOVE_HEAD(head, field) do { \
if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
(head)->sqh_last = &(head)->sqh_first; \
} while (0)
/*
* Tail queue definitions.
*/
#define TAILQ_HEAD(name, type) \
struct name { \
struct type *tqh_first; /* first element */ \
struct type **tqh_last; /* addr of last next element */ \
}
#define TAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).tqh_first }
#define TAILQ_ENTRY(type) \
struct { \
struct type *tqe_next; /* next element */ \
struct type **tqe_prev; /* address of previous next element */ \
}
/*
* tail queue access methods
*/
#define TAILQ_FIRST(head) ((head)->tqh_first)
#define TAILQ_END(head) NULL
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
#define TAILQ_LAST(head, headname) \
(*(((struct headname *)((head)->tqh_last))->tqh_last))
/* XXX */
#define TAILQ_PREV(elm, headname, field) \
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
#define TAILQ_EMPTY(head) \
(TAILQ_FIRST(head) == TAILQ_END(head))
#define TAILQ_FOREACH(var, head, field) \
for((var) = TAILQ_FIRST(head); \
(var) != TAILQ_END(head); \
(var) = TAILQ_NEXT(var, field))
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
for((var) = TAILQ_LAST(head, headname); \
(var) != TAILQ_END(head); \
(var) = TAILQ_PREV(var, headname, field))
/*
* Tail queue functions.
*/
#define TAILQ_INIT(head) do { \
(head)->tqh_first = NULL; \
(head)->tqh_last = &(head)->tqh_first; \
} while (0)
#define TAILQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
(head)->tqh_first->field.tqe_prev = \
&(elm)->field.tqe_next; \
else \
(head)->tqh_last = &(elm)->field.tqe_next; \
(head)->tqh_first = (elm); \
(elm)->field.tqe_prev = &(head)->tqh_first; \
} while (0)
#define TAILQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.tqe_next = NULL; \
(elm)->field.tqe_prev = (head)->tqh_last; \
*(head)->tqh_last = (elm); \
(head)->tqh_last = &(elm)->field.tqe_next; \
} while (0)
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
(elm)->field.tqe_next->field.tqe_prev = \
&(elm)->field.tqe_next; \
else \
(head)->tqh_last = &(elm)->field.tqe_next; \
(listelm)->field.tqe_next = (elm); \
(elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
} while (0)
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
(elm)->field.tqe_next = (listelm); \
*(listelm)->field.tqe_prev = (elm); \
(listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
} while (0)
#define TAILQ_REMOVE(head, elm, field) do { \
if (((elm)->field.tqe_next) != NULL) \
(elm)->field.tqe_next->field.tqe_prev = \
(elm)->field.tqe_prev; \
else \
(head)->tqh_last = (elm)->field.tqe_prev; \
*(elm)->field.tqe_prev = (elm)->field.tqe_next; \
_Q_INVALIDATE((elm)->field.tqe_prev); \
_Q_INVALIDATE((elm)->field.tqe_next); \
} while (0)
#define TAILQ_REPLACE(head, elm, elm2, field) do { \
if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
(elm2)->field.tqe_next->field.tqe_prev = \
&(elm2)->field.tqe_next; \
else \
(head)->tqh_last = &(elm2)->field.tqe_next; \
(elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
*(elm2)->field.tqe_prev = (elm2); \
_Q_INVALIDATE((elm)->field.tqe_prev); \
_Q_INVALIDATE((elm)->field.tqe_next); \
} while (0)
/*
* Circular queue definitions.
*/
#define CIRCLEQ_HEAD(name, type) \
struct name { \
struct type *cqh_first; /* first element */ \
struct type *cqh_last; /* last element */ \
}
#define CIRCLEQ_HEAD_INITIALIZER(head) \
{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
#define CIRCLEQ_ENTRY(type) \
struct { \
struct type *cqe_next; /* next element */ \
struct type *cqe_prev; /* previous element */ \
}
/*
* Circular queue access methods
*/
#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
#define CIRCLEQ_LAST(head) ((head)->cqh_last)
#define CIRCLEQ_END(head) ((void *)(head))
#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
#define CIRCLEQ_EMPTY(head) \
(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
#define CIRCLEQ_FOREACH(var, head, field) \
for((var) = CIRCLEQ_FIRST(head); \
(var) != CIRCLEQ_END(head); \
(var) = CIRCLEQ_NEXT(var, field))
#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
for((var) = CIRCLEQ_LAST(head); \
(var) != CIRCLEQ_END(head); \
(var) = CIRCLEQ_PREV(var, field))
/*
* Circular queue functions.
*/
#define CIRCLEQ_INIT(head) do { \
(head)->cqh_first = CIRCLEQ_END(head); \
(head)->cqh_last = CIRCLEQ_END(head); \
} while (0)
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
(elm)->field.cqe_next = (listelm)->field.cqe_next; \
(elm)->field.cqe_prev = (listelm); \
if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
(head)->cqh_last = (elm); \
else \
(listelm)->field.cqe_next->field.cqe_prev = (elm); \
(listelm)->field.cqe_next = (elm); \
} while (0)
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
(elm)->field.cqe_next = (listelm); \
(elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
(head)->cqh_first = (elm); \
else \
(listelm)->field.cqe_prev->field.cqe_next = (elm); \
(listelm)->field.cqe_prev = (elm); \
} while (0)
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
(elm)->field.cqe_next = (head)->cqh_first; \
(elm)->field.cqe_prev = CIRCLEQ_END(head); \
if ((head)->cqh_last == CIRCLEQ_END(head)) \
(head)->cqh_last = (elm); \
else \
(head)->cqh_first->field.cqe_prev = (elm); \
(head)->cqh_first = (elm); \
} while (0)
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.cqe_next = CIRCLEQ_END(head); \
(elm)->field.cqe_prev = (head)->cqh_last; \
if ((head)->cqh_first == CIRCLEQ_END(head)) \
(head)->cqh_first = (elm); \
else \
(head)->cqh_last->field.cqe_next = (elm); \
(head)->cqh_last = (elm); \
} while (0)
#define CIRCLEQ_REMOVE(head, elm, field) do { \
if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
(head)->cqh_last = (elm)->field.cqe_prev; \
else \
(elm)->field.cqe_next->field.cqe_prev = \
(elm)->field.cqe_prev; \
if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
(head)->cqh_first = (elm)->field.cqe_next; \
else \
(elm)->field.cqe_prev->field.cqe_next = \
(elm)->field.cqe_next; \
_Q_INVALIDATE((elm)->field.cqe_prev); \
_Q_INVALIDATE((elm)->field.cqe_next); \
} while (0)
#define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
CIRCLEQ_END(head)) \
(head)->cqh_last = (elm2); \
else \
(elm2)->field.cqe_next->field.cqe_prev = (elm2); \
if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
CIRCLEQ_END(head)) \
(head)->cqh_first = (elm2); \
else \
(elm2)->field.cqe_prev->field.cqe_next = (elm2); \
_Q_INVALIDATE((elm)->field.cqe_prev); \
_Q_INVALIDATE((elm)->field.cqe_next); \
} while (0)
#endif /* !_SYS_QUEUE_H_ */

22
i3bar/include/util.h Normal file
View File

@ -0,0 +1,22 @@
#ifndef UTIL_H_
#define UTIL_H_
/* Securely free p */
#define FREE(p) do { \
if (p != NULL) { \
free(p); \
p = NULL; \
} \
} while (0)
/* Securely fee single-linked list */
#define FREE_LIST(l, type) do { \
type* FREE_LIST_TMP; \
while (l != NULL) { \
FREE_LIST_TMP = l; \
free(l); \
l = l->next; \
} \
} while (0)
#endif

View File

@ -0,0 +1,26 @@
#ifndef WORKSPACES_H_
#define WORKSPACES_H_
#include "common.h"
#include "outputs.h"
typedef struct i3_ws_t i3_ws;
i3_ws* workspaces;
void refresh_workspaces();
void free_workspaces();
struct i3_ws_t {
int num;
char* name;
bool visible;
bool focused;
bool urgent;
rect rect;
i3_output* output;
i3_ws* next;
};
#endif

24
i3bar/include/xcb.h Normal file
View File

@ -0,0 +1,24 @@
#ifndef XCB_H_
#define XCB_H_
#include <xcb/xcb.h>
#define NUM_ATOMS 3
enum {
#define ATOM_DO(name) name,
#include "xcb_atoms.def"
};
xcb_atom_t atoms[NUM_ATOMS];
xcb_connection_t* xcb_connection;
xcb_screen_t* xcb_screens;
xcb_window_t xcb_root;
void init_xcb();
void clean_xcb();
void get_atoms();
void create_windows();
#endif

View File

@ -0,0 +1,4 @@
ATOM_DO(ATOM)
ATOM_DO(_NET_WM_WINDOW_TYPE)
ATOM_DO(_NET_WM_WINDOW_TYPE_DOCK)
#undef ATOM_DO

308
i3bar/src/ipc.c Normal file
View File

@ -0,0 +1,308 @@
#include <stdio.h>
#include <ev.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <string.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <i3/ipc.h>
#include "common.h"
#include "ipc.h"
struct callback_t {
void (*callback)(char*, void*);
void* params;
struct callback_t* next;
};
struct callback_t* outputs_cb_queue;
struct callback_t* workspaces_cb_queue;
int get_ipc_fd(const char* socket_path) {
int sockfd = socket(AF_LOCAL, SOCK_STREAM, 0);
if (sockfd == -1) {
printf("ERROR: Could not create Socket!\n");
exit(EXIT_FAILURE);
}
struct sockaddr_un addr;
memset(&addr, 0, sizeof(struct sockaddr_un));
addr.sun_family = AF_LOCAL;
strcpy(addr.sun_path, socket_path);
if (connect(sockfd, (const struct sockaddr*) &addr, sizeof(struct sockaddr_un)) < 0) {
printf("ERROR: Could not connct to i3\n");
exit(EXIT_FAILURE);
}
return sockfd;
}
void get_outputs_cb(struct ev_loop* loop, ev_io *watcher, int revents) {
}
void init_i3(const char* socket_path) {
int sockfd = get_ipc_fd(socket_path);
struct get_outputs_callback* cb = malloc(sizeof(struct get_outputs_callback));
cb->callback = callback;
cb->params = params;
ev_io* get_outputs_write = malloc(sizeof(ev_io));
ev_io_init(get_outputs_write, &get_outputs_write_cb, sockfd, EV_WRITE);
get_outputs_write->data = (void*) cb;
ev_io_start(main_loop, get_outputs_write);
ev_io* get_outputs_read = malloc(sizeof(ev_io));
ev_io_init(get_outputs_read, &get_outputs_read_cb, sockfd, EV_READ);
get_outputs_read->data = (void*) cb;
ev_io_start(main_loop, get_outputs_read);
}
void get_outputs_write_cb(struct ev_loop* loop, ev_io *watcher, int revents) {
ev_io_stop(loop, watcher);
int buffer_size = strlen(I3_IPC_MAGIC) + sizeof(uint32_t) + sizeof(uint32_t);
char msg[buffer_size];
char *walk = msg;
uint32_t msg_size = 0;
uint32_t msg_type = I3_IPC_MESSAGE_TYPE_GET_OUTPUTS;
int sockfd = watcher->fd;
strcpy(walk, I3_IPC_MAGIC);
walk += strlen(I3_IPC_MAGIC);
memcpy(walk, &msg_size, sizeof(uint32_t));
walk += sizeof(uint32_t);
memcpy(walk, &msg_type, sizeof(uint32_t));
int sent_bytes = 0;
int bytes_to_go = buffer_size;
while (sent_bytes < bytes_to_go) {
int n = write(sockfd, msg + sent_bytes, bytes_to_go);
if (n == -1) {
printf("ERROR: write() failed!\n");
exit(EXIT_FAILURE);
}
sent_bytes += n;
bytes_to_go -= n;
}
FREE(watcher);
}
void get_outputs_read_cb(struct ev_loop* loop, ev_io *watcher, int revents) {
ev_io_stop(loop, watcher);
int to_read = strlen(I3_IPC_MAGIC) + sizeof(uint32_t) + sizeof(uint32_t);
char msg[to_read];
char *walk = msg;
int sockfd = watcher->fd;
uint8_t *reply;
struct get_outputs_callback* cb = watcher->data;
uint32_t reply_length;
uint32_t read_bytes = 0;
while (read_bytes < to_read) {
int n = read(sockfd, msg + read_bytes, to_read);
if (n == -1) {
printf("ERROR: read() failed!\n");
exit(EXIT_FAILURE);
}
if (n == 0) {
printf("ERROR: No reply!\n");
exit(EXIT_FAILURE);
}
read_bytes += n;
to_read -= n;
}
if (memcmp(walk, I3_IPC_MAGIC, strlen(I3_IPC_MAGIC)) != 0) {
printf("ERROR: Wrong magic!\n");
exit(EXIT_FAILURE);
}
walk += strlen(I3_IPC_MAGIC);
reply_length = *((uint32_t*) walk);
walk += sizeof(uint32_t);
if (*((uint32_t*) walk) != I3_IPC_MESSAGE_TYPE_GET_OUTPUTS) {
printf("ERROR: Wrong reply type (%d) expected %d!\n",
*((uint32_t*) walk),
I3_IPC_MESSAGE_TYPE_GET_OUTPUTS);
exit(EXIT_FAILURE);
}
walk += sizeof(uint32_t);
reply = malloc(reply_length);
if (reply == NULL) {
printf("ERROR: malloc() failed!\n");
exit(EXIT_FAILURE);
}
to_read = reply_length;
read_bytes = 0;
while (read_bytes < to_read) {
int n = read(sockfd, reply + read_bytes, to_read);
if (n == -1) {
printf("ERROR: read() failed!\n");
exit(EXIT_FAILURE);
}
read_bytes += n;
to_read -= n;
}
cb->callback((char*) reply, cb->params);
FREE(cb);
FREE(watcher);
}
void get_outputs_json(void (*callback)(char*, void*), void* params) {
}
struct get_workspaces_callback {
void (*callback)(char*, void*);
void* params;
};
void get_workspaces_write_cb(struct ev_loop* loop, ev_io *watcher, int revents) {
ev_io_stop(loop, watcher);
//FREE(watcher);
int buffer_size = strlen(I3_IPC_MAGIC) + sizeof(uint32_t) + sizeof(uint32_t);
char msg[buffer_size];
char *walk = msg;
uint32_t msg_size = 0;
uint32_t msg_type = I3_IPC_MESSAGE_TYPE_GET_WORKSPACES;
int sockfd = watcher->fd;
strcpy(walk, I3_IPC_MAGIC);
walk += strlen(I3_IPC_MAGIC);
memcpy(walk, &msg_size, sizeof(uint32_t));
walk += sizeof(uint32_t);
memcpy(walk, &msg_type, sizeof(uint32_t));
int sent_bytes = 0;
int bytes_to_go = buffer_size;
while (sent_bytes < bytes_to_go) {
int n = write(sockfd, msg + sent_bytes, bytes_to_go);
if (n == -1) {
printf("ERROR: write() failed!\n");
exit(EXIT_FAILURE);
}
sent_bytes += n;
bytes_to_go -= n;
}
FREE(watcher);
}
void get_workspaces_read_cb(struct ev_loop* loop, ev_io *watcher, int revents) {
ev_io_stop(loop, watcher);
//FREE(watcher);
int to_read = strlen(I3_IPC_MAGIC) + sizeof(uint32_t) + sizeof(uint32_t);
char msg[to_read];
char *walk = msg;
int sockfd = watcher->fd;
uint8_t *reply;
struct get_workspaces_callback* cb = watcher->data;
uint32_t reply_length;
uint32_t read_bytes = 0;
while (read_bytes < to_read) {
int n = read(sockfd, msg + read_bytes, to_read);
if (n == -1) {
printf("ERROR: read() failed!\n");
exit(EXIT_FAILURE);
}
if (n == 0) {
printf("ERROR: No reply!\n");
exit(EXIT_FAILURE);
}
read_bytes += n;
to_read -= n;
}
if (memcmp(walk, I3_IPC_MAGIC, strlen(I3_IPC_MAGIC)) != 0) {
printf("ERROR: Wrong magic!\n");
exit(EXIT_FAILURE);
}
walk += strlen(I3_IPC_MAGIC);
reply_length = *((uint32_t*) walk);
walk += sizeof(uint32_t);
if (*((uint32_t*) walk) != I3_IPC_MESSAGE_TYPE_GET_WORKSPACES) {
printf("ERROR: Wrong reply type (%d) expected %d!\n",
*((uint32_t*) walk),
I3_IPC_MESSAGE_TYPE_GET_WORKSPACES);
exit(EXIT_FAILURE);
}
walk += sizeof(uint32_t);
reply = malloc(reply_length);
if (reply == NULL) {
printf("ERROR: malloc() failed!\n");
exit(EXIT_FAILURE);
}
to_read = reply_length;
read_bytes = 0;
while (read_bytes < to_read) {
int n = read(sockfd, reply + read_bytes, to_read);
if (n == -1) {
printf("ERROR: read() failed!\n");
exit(EXIT_FAILURE);
}
read_bytes += n;
to_read -= n;
}
cb->callback((char*) reply, cb->params);
FREE(cb);
FREE(watcher);
}
void get_workspaces_json(void (*callback)(char*, void*), void* params) {
socket_path = "/home/mero/.i3/ipc.sock";
int sockfd = socket(AF_LOCAL, SOCK_STREAM, 0);
if (sockfd == -1) {
printf("ERROR: Could not create Socket!\n");
exit(EXIT_FAILURE);
}
struct sockaddr_un addr;
memset(&addr, 0, sizeof(struct sockaddr_un));
addr.sun_family = AF_LOCAL;
strcpy(addr.sun_path, socket_path);
if (connect(sockfd, (const struct sockaddr*) &addr, sizeof(struct sockaddr_un)) < 0) {
printf("ERROR: Could not connct to i3\n");
exit(EXIT_FAILURE);
}
struct get_workspaces_callback* cb = malloc(sizeof(struct get_workspaces_callback));
cb->callback = callback;
cb->params = params;
ev_io* get_workspaces_write = malloc(sizeof(ev_io));
ev_io_init(get_workspaces_write, &get_workspaces_write_cb, sockfd, EV_WRITE);
get_workspaces_write->data = (void*) cb;
ev_io_start(main_loop, get_workspaces_write);
ev_io* get_workspaces_read = malloc(sizeof(ev_io));
ev_io_init(get_workspaces_read, &get_workspaces_read_cb, sockfd, EV_READ);
get_workspaces_read->data = (void*) cb;
ev_io_start(main_loop, get_workspaces_read);
}

29
i3bar/src/main.c Normal file
View File

@ -0,0 +1,29 @@
#include "ipc.h"
#include "outputs.h"
#include "workspaces.h"
#include "common.h"
#include "xcb.h"
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <ev.h>
int main(int argc, char **argv) {
main_loop = ev_default_loop(0);
init_xcb();
refresh_outputs(&create_windows, NULL);
refresh_workspaces(NULL, NULL);
ev_loop(main_loop, 0);
ev_default_destroy();
clean_xcb();
free_outputs();
free_workspaces();
//sleep(5);
return 0;
}

225
i3bar/src/outputs.c Normal file
View File

@ -0,0 +1,225 @@
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <yajl/yajl_parse.h>
#include "common.h"
#include "outputs.h"
#include "ipc.h"
struct outputs_json_params {
i3_output* outputs;
i3_output* outputs_walk;
char* cur_key;
char* json;
void (*callback)(void*);
void* cb_params;
};
static int outputs_null_cb(void* params_) {
struct outputs_json_params* params = (struct outputs_json_params*) params_;
if (strcmp(params->cur_key, "current_workspace")) {
return 0;
}
FREE(params->cur_key);
return 1;
}
static int outputs_boolean_cb(void* params_, bool val) {
struct outputs_json_params* params = (struct outputs_json_params*) params_;
if (strcmp(params->cur_key, "active")) {
return 0;
}
params->outputs_walk->active = val;
FREE(params->cur_key);
return 1;
}
static int outputs_integer_cb(void* params_, long val) {
struct outputs_json_params* params = (struct outputs_json_params*) params_;
if (!strcmp(params->cur_key, "current_workspace")) {
params->outputs_walk->ws = (int) val;
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "x")) {
params->outputs_walk->rect.x = (int) val;
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "y")) {
params->outputs_walk->rect.y = (int) val;
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "width")) {
params->outputs_walk->rect.w = (int) val;
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "height")) {
params->outputs_walk->rect.h = (int) val;
FREE(params->cur_key);
return 1;
}
return 0;
}
static int outputs_string_cb(void* params_, const unsigned char* val, unsigned int len) {
struct outputs_json_params* params = (struct outputs_json_params*) params_;
if (strcmp(params->cur_key, "name")) {
return 0;
}
params->outputs_walk->name = malloc(sizeof(const unsigned char) * (len + 1));
strncpy(params->outputs_walk->name, (const char*) val, len);
params->outputs_walk->name[len] = '\0';
FREE(params->cur_key);
return 1;
}
static int outputs_start_map_cb(void* params_) {
struct outputs_json_params* params = (struct outputs_json_params*) params_;
i3_output* new_output = NULL;
if (params->cur_key == NULL) {
new_output = malloc(sizeof(i3_output));
new_output->name = NULL;
new_output->ws = 0,
memset(&new_output->rect, 0, sizeof(rect));
new_output->next = NULL;
if (params->outputs == NULL) {
params->outputs = new_output;
} else {
params->outputs_walk->next = new_output;
}
params->outputs_walk = new_output;
return 1;
}
return 1;
}
static int outputs_map_key_cb(void* params_, const unsigned char* keyVal, unsigned int keyLen) {
struct outputs_json_params* params = (struct outputs_json_params*) params_;
FREE(params->cur_key);
params->cur_key = malloc(sizeof(unsigned char) * (keyLen + 1));
strncpy(params->cur_key, (const char*) keyVal, keyLen);
params->cur_key[keyLen] = '\0';
return 1;
}
yajl_callbacks outputs_callbacks = {
&outputs_null_cb,
&outputs_boolean_cb,
&outputs_integer_cb,
NULL,
NULL,
&outputs_string_cb,
&outputs_start_map_cb,
&outputs_map_key_cb,
NULL,
NULL,
NULL
};
void got_outputs_json_cb(char* json, void* params_) {
/* FIXME: Fasciliate stream-processing, i.e. allow starting to interpret
* JSON in chunks */
struct outputs_json_params* params = (struct outputs_json_params*) params_;
yajl_handle handle;
yajl_parser_config parse_conf = { 0, 0 };
yajl_status state;
params->json = json;
handle = yajl_alloc(&outputs_callbacks, &parse_conf, NULL, (void*) params);
state = yajl_parse(handle, (const unsigned char*) json, strlen(json));
/* FIXME: Propper errorhandling for JSON-parsing */
switch (state) {
case yajl_status_ok:
break;
case yajl_status_client_canceled:
case yajl_status_insufficient_data:
case yajl_status_error:
printf("ERROR: Could not parse outputs-reply!\n");
exit(EXIT_FAILURE);
break;
}
yajl_free(handle);
free_outputs();
outputs = params->outputs;
if (params->callback != NULL) {
params->callback(params->cb_params);
}
FREE(params->json);
FREE(params);
}
void refresh_outputs(void (*callback)(void*), void* cb_params) {
struct outputs_json_params* params = malloc(sizeof(struct outputs_json_params));
params->outputs = NULL;
params->outputs_walk = NULL;
params->cur_key = NULL;
params->json = NULL;
params->callback = callback;
params->cb_params = cb_params;
get_outputs_json(&got_outputs_json_cb, params);
}
void free_outputs() {
i3_output* tmp;
while (outputs != NULL) {
tmp = outputs;
outputs = outputs->next;
FREE(tmp->name);
FREE(tmp);
}
}
i3_output* get_output_by_name(char* name) {
if (outputs == NULL) {
refresh_outputs(NULL, NULL);
return NULL;
}
i3_output* walk;
for (walk = outputs; walk != NULL; walk = walk->next) {
if (strcmp(walk->name, name)) {
break;
}
}
return walk;
}

229
i3bar/src/workspaces.c Normal file
View File

@ -0,0 +1,229 @@
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <yajl/yajl_parse.h>
#include "common.h"
#include "workspaces.h"
#include "ipc.h"
struct workspaces_json_params {
i3_ws* workspaces;
i3_ws* workspaces_walk;
char* cur_key;
char* json;
};
static int workspaces_null_cb(void* params_) {
struct workspaces_json_params* params = (struct workspaces_json_params*) params_;
if (strcmp(params->cur_key, "current_workspace")) {
return 0;
}
FREE(params->cur_key);
return 1;
}
static int workspaces_boolean_cb(void* params_, bool val) {
struct workspaces_json_params* params = (struct workspaces_json_params*) params_;
if (!strcmp(params->cur_key, "visible")) {
params->workspaces_walk->visible = val;
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "focused")) {
params->workspaces_walk->focused = val;
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "urgent")) {
params->workspaces_walk->focused = val;
FREE(params->cur_key);
return 1;
}
FREE(params->cur_key);
return 0;
}
static int workspaces_integer_cb(void* params_, long val) {
struct workspaces_json_params* params = (struct workspaces_json_params*) params_;
if (!strcmp(params->cur_key, "num")) {
params->workspaces_walk->num = (int) val;
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "x")) {
params->workspaces_walk->rect.x = (int) val;
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "y")) {
params->workspaces_walk->rect.y = (int) val;
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "width")) {
params->workspaces_walk->rect.w = (int) val;
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "height")) {
params->workspaces_walk->rect.h = (int) val;
FREE(params->cur_key);
return 1;
}
FREE(params->cur_key);
return 0;
}
static int workspaces_string_cb(void* params_, const unsigned char* val, unsigned int len) {
struct workspaces_json_params* params = (struct workspaces_json_params*) params_;
char* output_name;
if (!strcmp(params->cur_key, "name")) {
params->workspaces_walk->name = malloc(sizeof(const unsigned char) * (len + 1));
strncpy(params->workspaces_walk->name, (const char*) val, len);
params->workspaces_walk->name[len] = '\0';
FREE(params->cur_key);
return 1;
}
if (!strcmp(params->cur_key, "output")) {
output_name = malloc(sizeof(const unsigned char) * (len + 1));
strncpy(output_name, (const char*) val, len);
output_name[len] = '\0';
params->workspaces_walk->output = get_output_by_name(output_name);
free(output_name);
return 1;
}
return 0;
}
static int workspaces_start_map_cb(void* params_) {
struct workspaces_json_params* params = (struct workspaces_json_params*) params_;
i3_ws* new_workspace = NULL;
if (params->cur_key == NULL) {
new_workspace = malloc(sizeof(i3_ws));
new_workspace->num = -1;
new_workspace->name = NULL;
new_workspace->visible = 0;
new_workspace->focused = 0;
new_workspace->urgent = 0;
memset(&new_workspace->rect, 0, sizeof(rect));
new_workspace->output = NULL;
new_workspace->next = NULL;
if (params->workspaces == NULL) {
params->workspaces = new_workspace;
} else {
params->workspaces_walk->next = new_workspace;
}
params->workspaces_walk = new_workspace;
return 1;
}
return 1;
}
static int workspaces_map_key_cb(void* params_, const unsigned char* keyVal, unsigned int keyLen) {
struct workspaces_json_params* params = (struct workspaces_json_params*) params_;
FREE(params->cur_key);
params->cur_key = malloc(sizeof(unsigned char) * (keyLen + 1));
strncpy(params->cur_key, (const char*) keyVal, keyLen);
params->cur_key[keyLen] = '\0';
return 1;
}
yajl_callbacks workspaces_callbacks = {
&workspaces_null_cb,
&workspaces_boolean_cb,
&workspaces_integer_cb,
NULL,
NULL,
&workspaces_string_cb,
&workspaces_start_map_cb,
&workspaces_map_key_cb,
NULL,
NULL,
NULL
};
void got_workspaces_json_cb(char* json, void* params_) {
/* FIXME: Fasciliate stream-processing, i.e. allow starting to interpret
* JSON in chunks */
struct workspaces_json_params* params = (struct workspaces_json_params*) params_;
yajl_handle handle;
yajl_parser_config parse_conf = { 0, 0 };
yajl_status state;
params->json = json;
handle = yajl_alloc(&workspaces_callbacks, &parse_conf, NULL, (void*) params);
state = yajl_parse(handle, (const unsigned char*) json, strlen(json));
/* FIXME: Propper errorhandling for JSON-parsing */
switch (state) {
case yajl_status_ok:
break;
case yajl_status_client_canceled:
case yajl_status_insufficient_data:
case yajl_status_error:
printf("ERROR: Could not parse workspaces-reply!\n");
exit(EXIT_FAILURE);
break;
}
yajl_free(handle);
free_workspaces();
workspaces = params->workspaces;
FREE(params->json);
FREE(params);
}
void refresh_workspaces() {
struct workspaces_json_params* params = malloc(sizeof(struct workspaces_json_params));
params->workspaces = NULL;
params->workspaces_walk = NULL;
params->cur_key = NULL;
params->json = NULL;
get_workspaces_json(&got_workspaces_json_cb, params);
}
void free_workspaces() {
i3_ws* tmp;
while (workspaces != NULL) {
tmp = workspaces;
workspaces = workspaces->next;
FREE(tmp->name);
FREE(tmp);
}
}

125
i3bar/src/xcb.c Normal file
View File

@ -0,0 +1,125 @@
#include <xcb/xcb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "xcb.h"
#include "outputs.h"
xcb_intern_atom_cookie_t atom_cookies[NUM_ATOMS];
void init_xcb() {
/* LEAK: xcb_connect leaks Memory */
xcb_connection = xcb_connect(NULL, NULL);
if (xcb_connection_has_error(xcb_connection)) {
printf("Cannot open display\n");
exit(EXIT_FAILURE);
}
printf("Connected to xcb\n");
/* We have to request the atoms we need */
#define ATOM_DO(name) atom_cookies[name] = xcb_intern_atom(xcb_connection, 0, strlen(#name), #name);
#include "xcb_atoms.def"
xcb_screens = xcb_setup_roots_iterator(xcb_get_setup(xcb_connection)).data;
xcb_root = xcb_screens->root;
/* FIXME: Maybe we can push that further backwards */
get_atoms();
}
void clean_xcb() {
xcb_disconnect(xcb_connection);
}
void get_atoms() {
xcb_intern_atom_reply_t* reply;
#define ATOM_DO(name) reply = xcb_intern_atom_reply(xcb_connection, atom_cookies[name], NULL); \
atoms[name] = reply->atom; \
free(reply);
#include "xcb_atoms.def"
printf("Got Atoms\n");
}
void create_windows() {
uint32_t mask;
uint32_t values[2];
i3_output* walk = outputs;
while (walk != NULL) {
if (!walk->active) {
walk = walk->next;
continue;
}
printf("Creating Window for output %s\n", walk->name);
walk->win = xcb_generate_id(xcb_connection);
mask = XCB_CW_BACK_PIXEL;
values[0] = xcb_screens->black_pixel;
xcb_create_window(xcb_connection,
xcb_screens->root_depth,
walk->win,
xcb_root,
walk->rect.x, walk->rect.y,
walk->rect.w, 20,
1,
XCB_WINDOW_CLASS_INPUT_OUTPUT,
xcb_screens->root_visual,
mask,
values);
xcb_change_property(xcb_connection,
XCB_PROP_MODE_REPLACE,
walk->win,
atoms[_NET_WM_WINDOW_TYPE],
atoms[ATOM],
32,
1,
(unsigned char*) &atoms[_NET_WM_WINDOW_TYPE_DOCK]);
xcb_map_window(xcb_connection, walk->win);
walk = walk->next;
}
xcb_flush(xcb_connection);
}
#if 0
xcb_screen_t* screens = xcb_setup_roots_iterator(xcb_get_setup(xcb_connection)).data;
xcb_gcontext_t ctx = xcb_generate_id(xcb_connection);
xcb_window_t win = screens->root;
uint32_t mask = XCB_GC_FOREGROUND | XCB_GC_GRAPHICS_EXPOSURES;
uint32_t values[2];
values[0] = screens->black_pixel;
values[1] = 0;
xcb_create_gc(xcb_connection, ctx, win, mask, values);
request_atoms();
/* Fenster erzeugen */
win = xcb_generate_id(xcb_connection);
mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK;
values[0] = screens->white_pixel;
values[1] = XCB_EVENT_MASK_EXPOSURE | XCB_EVENT_MASK_KEY_PRESS;
xcb_create_window(xcb_connection, screens->root_depth, win, screens->root,
10, 10, 20, 20, 1,
XCB_WINDOW_CLASS_INPUT_OUTPUT, screens->root_visual,
mask, values);
get_atoms();
xcb_change_property(xcb_connection,
XCB_PROP_MODE_REPLACE,
win,
atoms[_NET_WM_WINDOW_TYPE],
atoms[ATOM],
32,
1,
(unsigned char *) &atoms[_NET_WM_WINDOW_TYPE_DOCK]);
xcb_map_window(xcb_connection, win);
xcb_flush(xcb_connection);
#endif