This fixes a bug I introduced in #1921. When restarting i3 in place a
stray workspace was created on the root_output during restart. On first
start, this workspace would have been moved to the first real and empty
output.
However, this does not produce the desired result during restarts when
workspaces are alread present on all real outputs. The stray workspace would
still be added to the first real output which already contains some
workspaces. Thus, adding a new empty workspace to it.
Fix this by delaying creation of the root output's workspace until it is
known whether the output is active or not.
Fixes#1940
This patch introduces a root output covering the root window. It is used
in two cases:
1. RandR is not available. In this case, the previous behaviour of
creating a single output covering the root window is preserved.
2. RandR is available, but there is no active output. In this case,
the root output is enabled and will be the only active output.
If any RandR output becomes available, the root output will be
disabled again. Existing mechanisms for migrating workspaces will
just work without modification.
I've carefully slipped in a global variable `Output root_output` representing
that output.
Fixes#926 and #1489
This should be the last commit that formats a big bunch of files. From
here on, whenever I merge patches, I’ll run clang-format like described
in the title.
This has multiple effects:
1) The i3 codebase is now consistently formatted. clang-format uncovered
plenty of places where inconsistent code made it into our code base.
2) When writing code, you don’t need to think or worry about our coding
style. Write it in yours, then run clang-format-3.5
3) When submitting patches, we don’t need to argue about coding style.
The basic idea is that we don’t want to care about _how_ we write the
code, but _what_ it does :). The coding style that we use is defined in
the .clang-format config file and is based on the google style, but
adapted in such a way that the number of modifications to the i3 code
base is minimal.
See also:
http://article.gmane.org/gmane.linux.kernel/1268792
The C compiler will handle (void) as "no arguments" and () as "variadic
function" (equivalent to (...)) which might lead to subtle errors, such
as the one which was fixed with commit 0ea64ae4.
Add --force-xinerama when starting i3 to use Xinerama instead of RandR.
This should *ONLY* be done if you have no other choice (nvidia’s
binary driver uses twinview and does not expose the monitor information
through RandR).
Thanks to Merovius for doing a proof of concept on this one and
being a driving force behind the idea.
Using RandR instead of Xinerama means that we are now able to use
the full potential of the modern way of configuring screens. That
means, i3 now has an idea of the outputs your graphic driver
provides, which allowed us to get rid of the ugly way of detecting
changes in the screen configuration which we used before. Now, your
workspaces should not be confused when changing output modes anymore.
Also, instead of having ugly heuristics to assign your workspaces
to (the screen at position X or the second screen in the list of
screens) you will be able to just specify an output name.
As this change basically touches everything, you should be prepared
for bugs. Please test and report them!
This fixes many problems we were having with a dynamically growing
array because of the realloc (pointers inside the area which was
allocated were no longer valid as soon as the realloc moved the
memory to another address).
Again, this is a rather big change, so expect problems and enable
core-dumps.
As the workspaces are now created dynamically, we cannot rely on
the workspaces to be there when we need them without creating them.
On the other hand, this eliminates the case that there are no workspaces
to assign to a new screen, because now we can just create one.
Warning: This is not yet thoroughly tested, so be prepared to
encounter some segfaults. Please enable logging and coredumps,
so we can fix bugs quickly.
Before this fix, you could go upwards and select the screen which
was at the rightmost because it also was the one topmost (if all
screen’s top position is equal).
Please test this! Plug in screens, unplug them, use your video projector,
change resolutions, etc.
To use the assignments, use the following syntax:
workspace <number> [screen <screen>] [name]
Where screen can be one of:
<number> (It is not provided that these numbers stay constant, so use with care)
<x>x<y> (Coordinates where the screen starts, so 1280 will be fine to match the
screen right of the main screen if your main screen is 1280 pixels
width. However, 1281 will not match)
<x>
x<y>
Some examples follow:
workspace 1 screen 0
workspace 1 screen 1
workspace 1 screen 1280x0
workspace 2 screen 1280
workspace 3 screen x0
workspace 3 screen 1 www
workspace 4 screen 0 mail
Thus, no more flickering because the window was first mapped and then
moved. Especially users of multiple monitors should be happy now ;-).
Rather radical change, though, so be prepared for problems.
When rotating your screens (xrandr --output LVDS1 --rotate right), sometimes
the X server returned no screens which lead to an exit(1) of i3. Now, i3
tries to find screens for up to 5 seconds and only quits afterwards.
When you disable a Xinerama screen (think of removing a video projector),
the workspaces of that screen need to be re-assigned to another screen.
Previously, the clients affected by this re-assignment did not get re-
configured, which made them appear on the next screen which got configured
at the position of the old one again if you did not switch to the reassigned
workspace before.
So, to reproduce it:
xrandr --output VGA --mode 1280x1024 --right-of LVDS
move windows to the new workspace
xrandr --output VGA --off
xrandr --output VGA --mode 1280x1024 --right-of LVDS
This fixes ticket #36