gnu: Add randomjungle.
* gnu/packages/machine-learning.scm (randomjungle): New variable.
This commit is contained in:
parent
71f80f5487
commit
0931c6091c
|
@ -23,7 +23,12 @@
|
|||
#:use-module (guix download)
|
||||
#:use-module (guix build-system gnu)
|
||||
#:use-module (gnu packages)
|
||||
#:use-module (gnu packages python))
|
||||
#:use-module (gnu packages boost)
|
||||
#:use-module (gnu packages compression)
|
||||
#:use-module (gnu packages gcc)
|
||||
#:use-module (gnu packages maths)
|
||||
#:use-module (gnu packages python)
|
||||
#:use-module (gnu packages xml))
|
||||
|
||||
(define-public libsvm
|
||||
(package
|
||||
|
@ -96,3 +101,46 @@ classification.")
|
|||
(inputs
|
||||
`(("python" ,python)))
|
||||
(synopsis "Python bindings of libSVM")))
|
||||
|
||||
(define-public randomjungle
|
||||
(package
|
||||
(name "randomjungle")
|
||||
(version "2.1.0")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (string-append
|
||||
"http://www.imbs-luebeck.de/imbs/sites/default/files/u59/"
|
||||
"randomjungle-" version ".tar_.gz"))
|
||||
(sha256
|
||||
(base32
|
||||
"12c8rf30cla71swx2mf4ww9mfd8jbdw5lnxd7dxhyw1ygrvg6y4w"))))
|
||||
(build-system gnu-build-system)
|
||||
(arguments
|
||||
`(#:configure-flags
|
||||
(list (string-append "--with-boost="
|
||||
(assoc-ref %build-inputs "boost")))
|
||||
#:phases
|
||||
(modify-phases %standard-phases
|
||||
(add-before
|
||||
'configure 'set-CXXFLAGS
|
||||
(lambda _
|
||||
(setenv "CXXFLAGS" "-fpermissive ")
|
||||
#t)))))
|
||||
(inputs
|
||||
`(("boost" ,boost)
|
||||
("gsl" ,gsl)
|
||||
("libxml2" ,libxml2)
|
||||
("zlib" ,zlib)))
|
||||
(native-inputs
|
||||
`(("gfortran" ,gfortran-4.8)))
|
||||
(home-page "http://www.imbs-luebeck.de/imbs/de/node/227/")
|
||||
(synopsis "Implementation of the Random Forests machine learning method")
|
||||
(description
|
||||
"Random Jungle is an implementation of Random Forests. It is supposed to
|
||||
analyse high dimensional data. In genetics, it can be used for analysing big
|
||||
Genome Wide Association (GWA) data. Random Forests is a powerful machine
|
||||
learning method. Most interesting features are variable selection, missing
|
||||
value imputation, classifier creation, generalization error estimation and
|
||||
sample proximities between pairs of cases.")
|
||||
(license license:gpl3+)))
|
||||
|
|
Loading…
Reference in New Issue