gnu: Add lightgbm.
* gnu/packages/machine-learning.scm (lightgbm): New variable. Signed-off-by: Ludovic Courtès <ludo@gnu.org>
This commit is contained in:
parent
baed923682
commit
112c2c010b
|
@ -47,6 +47,7 @@
|
|||
#:use-module (gnu packages gcc)
|
||||
#:use-module (gnu packages image)
|
||||
#:use-module (gnu packages maths)
|
||||
#:use-module (gnu packages mpi)
|
||||
#:use-module (gnu packages ocaml)
|
||||
#:use-module (gnu packages perl)
|
||||
#:use-module (gnu packages pkg-config)
|
||||
|
@ -786,3 +787,49 @@ main intended application of Autograd is gradient-based optimization.")
|
|||
|
||||
(define-public python2-autograd
|
||||
(package-with-python2 python-autograd))
|
||||
|
||||
(define-public lightgbm
|
||||
(package
|
||||
(name "lightgbm")
|
||||
(version "2.0.12")
|
||||
(source (origin
|
||||
(method url-fetch)
|
||||
(uri (string-append
|
||||
"https://github.com/Microsoft/LightGBM/archive/v"
|
||||
version ".tar.gz"))
|
||||
(sha256
|
||||
(base32
|
||||
"132zf0yk0545mg72hyzxm102g3hpb6ixx9hnf8zd2k55gas6cjj1"))
|
||||
(file-name (string-append name "-" version ".tar.gz"))))
|
||||
(native-inputs
|
||||
`(("python-pytest" ,python-pytest)
|
||||
("python-nose" ,python-nose)))
|
||||
(inputs
|
||||
`(("openmpi" ,openmpi)))
|
||||
(propagated-inputs
|
||||
`(("python-numpy" ,python-numpy)
|
||||
("python-scipy" ,python-scipy)))
|
||||
(arguments
|
||||
`(#:configure-flags
|
||||
'("-DUSE_MPI=ON")
|
||||
#:phases
|
||||
(modify-phases %standard-phases
|
||||
(replace 'check
|
||||
(lambda* (#:key outputs #:allow-other-keys)
|
||||
(with-directory-excursion ,(string-append "../LightGBM-" version)
|
||||
(invoke "pytest" "tests/c_api_test/test_.py")))))))
|
||||
(build-system cmake-build-system)
|
||||
(home-page "https://github.com/Microsoft/LightGBM")
|
||||
(synopsis "Gradient boosting framework based on decision tree algorithms")
|
||||
(description "LightGBM is a gradient boosting framework that uses tree
|
||||
based learning algorithms. It is designed to be distributed and efficient with
|
||||
the following advantages:
|
||||
|
||||
@itemize
|
||||
@item Faster training speed and higher efficiency
|
||||
@item Lower memory usage
|
||||
@item Better accuracy
|
||||
@item Parallel and GPU learning supported (not enabled in this package)
|
||||
@item Capable of handling large-scale data
|
||||
@end itemize\n")
|
||||
(license license:expat)))
|
||||
|
|
Loading…
Reference in New Issue