gnu: Add r-mixomics.
* gnu/packages/bioconductor.scm (r-mixomics): New variable. Signed-off-by: Ricardo Wurmus <rekado@elephly.net>
This commit is contained in:
parent
1502751b32
commit
1adb9cbc5e
|
@ -4932,3 +4932,45 @@ change point detection.")
|
||||||
"FlowSOM offers visualization options for cytometry data, by using
|
"FlowSOM offers visualization options for cytometry data, by using
|
||||||
self-organizing map clustering and minimal spanning trees.")
|
self-organizing map clustering and minimal spanning trees.")
|
||||||
(license license:gpl2+)))
|
(license license:gpl2+)))
|
||||||
|
|
||||||
|
(define-public r-mixomics
|
||||||
|
(package
|
||||||
|
(name "r-mixomics")
|
||||||
|
(version "6.8.0")
|
||||||
|
(source
|
||||||
|
(origin
|
||||||
|
(method url-fetch)
|
||||||
|
(uri (bioconductor-uri "mixOmics" version))
|
||||||
|
(sha256
|
||||||
|
(base32
|
||||||
|
"1f08jx35amn3sfcmqb96mjxxsm6dnpzhff625z758x1992wj4zsk"))))
|
||||||
|
(properties `((upstream-name . "mixOmics")))
|
||||||
|
(build-system r-build-system)
|
||||||
|
(propagated-inputs
|
||||||
|
`(("r-corpcor" ,r-corpcor)
|
||||||
|
("r-dplyr" ,r-dplyr)
|
||||||
|
("r-ellipse" ,r-ellipse)
|
||||||
|
("r-ggplot2" ,r-ggplot2)
|
||||||
|
("r-gridextra" ,r-gridextra)
|
||||||
|
("r-igraph" ,r-igraph)
|
||||||
|
("r-lattice" ,r-lattice)
|
||||||
|
("r-mass" ,r-mass)
|
||||||
|
("r-matrixstats" ,r-matrixstats)
|
||||||
|
("r-rarpack" ,r-rarpack)
|
||||||
|
("r-rcolorbrewer" ,r-rcolorbrewer)
|
||||||
|
("r-reshape2" ,r-reshape2)
|
||||||
|
("r-tidyr" ,r-tidyr)))
|
||||||
|
(home-page "http://www.mixOmics.org")
|
||||||
|
(synopsis "Multivariate methods for exploration of biological datasets")
|
||||||
|
(description
|
||||||
|
"mixOmics offers a wide range of multivariate methods for the exploration
|
||||||
|
and integration of biological datasets with a particular focus on variable
|
||||||
|
selection. The package proposes several sparse multivariate models we have
|
||||||
|
developed to identify the key variables that are highly correlated, and/or
|
||||||
|
explain the biological outcome of interest. The data that can be analysed
|
||||||
|
with mixOmics may come from high throughput sequencing technologies, such as
|
||||||
|
omics data (transcriptomics, metabolomics, proteomics, metagenomics etc) but
|
||||||
|
also beyond the realm of omics (e.g. spectral imaging). The methods
|
||||||
|
implemented in mixOmics can also handle missing values without having to
|
||||||
|
delete entire rows with missing data.")
|
||||||
|
(license license:gpl2+)))
|
||||||
|
|
Loading…
Reference in New Issue