gnu: Add r-linnorm.

* gnu/packages/bioconductor.scm (r-linnorm): New variable.
This commit is contained in:
Ricardo Wurmus 2019-03-13 17:13:21 +01:00
parent 70daf82f28
commit 4291f36a22
No known key found for this signature in database
GPG Key ID: 197A5888235FACAC
1 changed files with 59 additions and 0 deletions

View File

@ -2424,3 +2424,62 @@ variance stabilization, normalization and gene annotation at the probe level.
It also includes the functions of processing Illumina methylation microarrays, It also includes the functions of processing Illumina methylation microarrays,
especially Illumina Infinium methylation microarrays.") especially Illumina Infinium methylation microarrays.")
(license license:lgpl2.0+))) (license license:lgpl2.0+)))
(define-public r-linnorm
(package
(name "r-linnorm")
(version "2.6.1")
(source
(origin
(method url-fetch)
(uri (bioconductor-uri "Linnorm" version))
(sha256
(base32
"1qgk8m5kc409flqxs3vnf228v3z0112q8py9hgfgyiwvi6yzdbp6"))))
(properties `((upstream-name . "Linnorm")))
(build-system r-build-system)
(propagated-inputs
`(("r-amap" ,r-amap)
("r-apcluster" ,r-apcluster)
("r-ellipse" ,r-ellipse)
("r-fastcluster" ,r-fastcluster)
("r-fpc" ,r-fpc)
("r-ggdendro" ,r-ggdendro)
("r-ggplot2" ,r-ggplot2)
("r-gmodels" ,r-gmodels)
("r-igraph" ,r-igraph)
("r-limma" ,r-limma)
("r-mass" ,r-mass)
("r-mclust" ,r-mclust)
("r-rcpp" ,r-rcpp)
("r-rcpparmadillo" ,r-rcpparmadillo)
("r-rtsne" ,r-rtsne)
("r-statmod" ,r-statmod)
("r-vegan" ,r-vegan)
("r-zoo" ,r-zoo)))
(home-page "http://www.jjwanglab.org/Linnorm/")
(synopsis "Linear model and normality based transformation method")
(description
"Linnorm is an R package for the analysis of RNA-seq, scRNA-seq, ChIP-seq
count data or any large scale count data. It transforms such datasets for
parametric tests. In addition to the transformtion function (@code{Linnorm}),
the following pipelines are implemented:
@enumerate
@item Library size/batch effect normalization (@code{Linnorm.Norm})
@item Cell subpopluation analysis and visualization using t-SNE or PCA K-means
clustering or hierarchical clustering (@code{Linnorm.tSNE},
@code{Linnorm.PCA}, @code{Linnorm.HClust})
@item Differential expression analysis or differential peak detection using
limma (@code{Linnorm.limma})
@item Highly variable gene discovery and visualization (@code{Linnorm.HVar})
@item Gene correlation network analysis and visualization (@code{Linnorm.Cor})
@item Stable gene selection for scRNA-seq data; for users without or who do
not want to rely on spike-in genes (@code{Linnorm.SGenes})
@item Data imputation (@code{Linnorm.DataImput}).
@end enumerate
Linnorm can work with raw count, CPM, RPKM, FPKM and TPM. Additionally, the
@code{RnaXSim} function is included for simulating RNA-seq data for the
evaluation of DEG analysis methods.")
(license license:expat)))