gnu: Add r-ebimage.

* gnu/packages/bioconductor.scm (r-ebimage): New variable.
This commit is contained in:
Ricardo Wurmus 2019-03-29 19:28:03 +01:00
parent ffe7029bab
commit 5cfa4bff69
No known key found for this signature in database
GPG Key ID: 197A5888235FACAC
1 changed files with 40 additions and 0 deletions

View File

@ -30,6 +30,7 @@
#:use-module (gnu packages gcc) #:use-module (gnu packages gcc)
#:use-module (gnu packages graph) #:use-module (gnu packages graph)
#:use-module (gnu packages haskell) #:use-module (gnu packages haskell)
#:use-module (gnu packages image)
#:use-module (gnu packages maths) #:use-module (gnu packages maths)
#:use-module (gnu packages pkg-config) #:use-module (gnu packages pkg-config)
#:use-module (gnu packages statistics) #:use-module (gnu packages statistics)
@ -3586,3 +3587,42 @@ procedure. In addition, since the cells are evaluated individually, it can
easily be applied to bigger datasets, subsetting the expression matrix if easily be applied to bigger datasets, subsetting the expression matrix if
needed.") needed.")
(license license:gpl3))) (license license:gpl3)))
(define-public r-ebimage
(package
(name "r-ebimage")
(version "4.24.0")
(source
(origin
(method url-fetch)
(uri (bioconductor-uri "EBImage" version))
(sha256
(base32
"18v2zr7xh0d0xbs7mxa2b6xjqlqiml0hji27gq1351xp5bf2pxvx"))))
(properties `((upstream-name . "EBImage")))
(build-system r-build-system)
(propagated-inputs
`(("r-abind" ,r-abind)
("r-biocgenerics" ,r-biocgenerics)
("r-fftwtools" ,r-fftwtools)
("r-htmltools" ,r-htmltools)
("r-htmlwidgets" ,r-htmlwidgets)
("r-jpeg" ,r-jpeg)
("r-locfit" ,r-locfit)
("r-png" ,r-png)
("r-rcurl" ,r-rcurl)
("r-tiff" ,r-tiff)))
(native-inputs
`(("r-knitr" ,r-knitr))) ; for vignettes
(home-page "https://github.com/aoles/EBImage")
(synopsis "Image processing and analysis toolbox for R")
(description
"EBImage provides general purpose functionality for image processing and
analysis. In the context of (high-throughput) microscopy-based cellular
assays, EBImage offers tools to segment cells and extract quantitative
cellular descriptors. This allows the automation of such tasks using the R
programming language and facilitates the use of other tools in the R
environment for signal processing, statistical modeling, machine learning and
visualization with image data.")
;; Any version of the LGPL.
(license license:lgpl2.1+)))