gnu: Add python-pyfit-sne.
* gnu/packages/bioinformatics.scm (python-pyfit-sne): New variable.
This commit is contained in:
parent
a37bdf4289
commit
9846ec0bea
|
@ -14497,3 +14497,33 @@ designed for use with hybrid capture, including both whole-exome and custom
|
||||||
target panels, and short-read sequencing platforms such as Illumina and Ion
|
target panels, and short-read sequencing platforms such as Illumina and Ion
|
||||||
Torrent.")
|
Torrent.")
|
||||||
(license license:asl2.0)))
|
(license license:asl2.0)))
|
||||||
|
|
||||||
|
(define-public python-pyfit-sne
|
||||||
|
(package
|
||||||
|
(name "python-pyfit-sne")
|
||||||
|
(version "1.0.1")
|
||||||
|
(source
|
||||||
|
(origin
|
||||||
|
(method git-fetch)
|
||||||
|
(uri (git-reference
|
||||||
|
(url "https://github.com/KlugerLab/pyFIt-SNE.git")
|
||||||
|
(commit version)))
|
||||||
|
(file-name (git-file-name name version))
|
||||||
|
(sha256
|
||||||
|
(base32 "13wh3qkzs56azmmgnxib6xfr29g7xh09sxylzjpni5j0pp0rc5qw"))))
|
||||||
|
(build-system python-build-system)
|
||||||
|
(propagated-inputs
|
||||||
|
`(("python-numpy" ,python-numpy)))
|
||||||
|
(inputs
|
||||||
|
`(("fftw" ,fftw)))
|
||||||
|
(native-inputs
|
||||||
|
`(("python-cython" ,python-cython)))
|
||||||
|
(home-page "https://github.com/KlugerLab/pyFIt-SNE")
|
||||||
|
(synopsis "FFT-accelerated Interpolation-based t-SNE")
|
||||||
|
(description
|
||||||
|
"t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful
|
||||||
|
method for dimensionality reduction and visualization of high dimensional
|
||||||
|
datasets. A popular implementation of t-SNE uses the Barnes-Hut algorithm to
|
||||||
|
approximate the gradient at each iteration of gradient descent. This package
|
||||||
|
is a Cython wrapper for FIt-SNE.")
|
||||||
|
(license license:bsd-4)))
|
||||||
|
|
Loading…
Reference in New Issue