diff --git a/rp-private.h b/rp-private.h
index b4c7dad..0c7193e 100644
--- a/rp-private.h
+++ b/rp-private.h
@@ -36,7 +36,7 @@
 #define LONG_SHIFT ((LONG_LENGTH == 16) ? 4 : \
                     (LONG_LENGTH == 32) ? 5 : \
 		    (LONG_LENGTH == 64) ? 6 : 0)
-#define LONG_MASK (~(-1L<<LONG_SHIFT))
+#define LONG_MASK (~(-(1L<<LONG_SHIFT)))
 
 /* Check if SSE instructions can be used.
    We assume that one SSE word of 128 bit is two long's,
diff --git a/sturm.c b/sturm.c
index c78d7c6..5fd2cf5 100644
--- a/sturm.c
+++ b/sturm.c
@@ -27,7 +27,6 @@
  ***********************************************************************/
 
 #include "ratpoints.h"
-
 /**************************************************************************
  * Arguments of _ratpoints_compute_sturm() : (from the args argument)     *
  *                                                                        *
@@ -53,7 +52,7 @@
 /* A helper function: evaluate the polynomial in cofs[] of given degree
   at num/2^denexp and return the sign. */
 
-static long eval_sign(ratpoints_args *args, mpz_t *cofs, long degree,
+static long eval_sign(const ratpoints_args *args, const mpz_t *cofs, long degree,
                       long num, long denexp)
 {
   long n, e, s;
@@ -70,11 +69,80 @@ static long eval_sign(ratpoints_args *args, mpz_t *cofs, long degree,
   return(s);
 }
 
+static const    long max = (long)(((unsigned long)(-1))>>1);
+static const    long min = (long)(-(((unsigned long)(-1))>>1));
+    /* recursive helper function */
+static void iterate(long nl, long nr, long del, long der, long cleft, long cright,
+                 long sl, long sr, long depth,
+		 ratpoints_interval **iptr, const ratpoints_interval *ivlo,
+		 const ratpoints_args *args, const long k, const long sturm_degs[],
+                 const mpz_t sturm[][args->degree + 1])
+    { /* nl/2^del, nr/2^der : interval left/right endpoints,
+         cleft, cright: sign change counts at endpoints,
+         sl, sr: signs at endpoints,
+         depth: iteration depth */
+     long iter = args->sturm;
+      if(cleft == cright && sl < 0) { return; }
+         /* here we know the polynomial is negative on the interval */
+      if((cleft == cright && sl > 0) || depth >= iter)
+      /* we have to add/extend an interval if we either know that
+         the polynomial is positive on the interval (first condition)
+         or the maximal iteration depth has been reached (second condition) */
+      { double l = ((double)nl)/((double)(1<<del));
+        double u = ((double)nr)/((double)(1<<der));
+        if(*iptr == ivlo)
+        { (*iptr)->low = l; (*iptr)->up  = u; (*iptr)++; }
+        else
+        { if(((*iptr)-1)->up == l) /* extend interval */
+          { ((*iptr)-1)->up = u; }
+          else /* new interval */
+          { (*iptr)->low = l; (*iptr)->up  = u; (*iptr)++; }
+        }
+        return;
+      }
+      /* now we must split the interval and evaluate the sturm sequence
+         at the midpoint */
+      { long nm, dem, s0, s1, s2, s, cmid = 0, n;
+        if(nl == min)
+        { if(nr == max) { nm = 0; dem = 0; }
+          else { nm = (nr == 0) ? -1 : 2*nr; dem = 0; }
+        }
+        else
+        { if(nr == max) { nm = (nl == 0) ? 1 : 2*nl; dem = 0; }
+          else /* "normal" case */
+          { if(del == der) /* then both are zero */
+            { if(((nl+nr) & 1) == 0) { nm = (nl+nr)>>1; dem = 0; }
+              else { nm = nl+nr; dem = 1; }
+            }
+            else /* here one de* is greater */
+            { if(del > der) { nm = nl + (nr<<(del-der)); dem = del+1; }
+              else { nm = (nl<<(der-del)) + nr; dem = der+1; }
+            }
+          }
+        }
+        s0 = eval_sign(args, sturm[0], sturm_degs[0], nm, dem);
+        s1 = eval_sign(args, sturm[1], sturm_degs[1], nm, dem);
+        if(s0*s1 == -1) { cmid++; }
+        s = (s1 == 0) ? s0 : s1;
+        for(n = 2; n <= k; n++)
+        { s2 = eval_sign(args, sturm[n], sturm_degs[n], nm, dem);
+          if(s2 == -s) { cmid++; s = s2; }
+          else if(s2 != 0) { s = s2; }
+        }
+        /* now recurse */
+        iterate(nl, nm, del, dem, cleft, (s0==0) ? (cmid+1) : cmid,
+                sl, (s0==0) ? -s1 : s0, depth+1,
+                iptr, ivlo, args, k, sturm_degs, sturm);
+        iterate(nm, nr, dem, der, cmid, cright,
+                (s0==0) ? s1 : s0, sr, depth+1,
+		iptr, ivlo, args, k, sturm_degs, sturm);
+      }
+    } /* end iterate() */
+
 long _ratpoints_compute_sturm(ratpoints_args *args)
 { 
   mpz_t *cofs = args->cof;
   long degree = args->degree;
-  long iter = args->sturm; 
   ratpoints_interval *ivlist = args->domain;
   long num_iv = args->num_inter;
   long n, m, k, new_num;
@@ -165,75 +233,12 @@ long _ratpoints_compute_sturm(ratpoints_args *args)
   /* recall: typedef struct {double low; double up;} ratpoints_interval; */
   { ratpoints_interval ivlocal[1 + (degree>>1)];
     ratpoints_interval *iptr = &ivlocal[0];
-    long max = (long)(((unsigned long)(-1))>>1);
-    long min = -max;
     long num_intervals;
     long slcf = mpz_cmp_si(cofs[degree], 0);
 
-    /* recursive helper function */
-    void iterate(long nl, long nr, long del, long der, long cleft, long cright,
-                 long sl, long sr, long depth)
-    { /* nl/2^del, nr/2^der : interval left/right endpoints,
-         cleft, cright: sign change counts at endpoints,
-         sl, sr: signs at endpoints,
-         depth: iteration depth */
-      if(cleft == cright && sl < 0) { return; }
-         /* here we know the polynomial is negative on the interval */
-      if((cleft == cright && sl > 0) || depth >= iter) 
-      /* we have to add/extend an interval if we either know that
-         the polynomial is positive on the interval (first condition)
-         or the maximal iteration depth has been reached (second condition) */
-      { double l = ((double)nl)/((double)(1<<del));
-        double u = ((double)nr)/((double)(1<<der));
-        if(iptr == &ivlocal[0])
-        { iptr->low = l; iptr->up  = u; iptr++; }
-        else
-        { if((iptr-1)->up == l) /* extend interval */
-          { (iptr-1)->up = u; }
-          else /* new interval */
-          { iptr->low = l; iptr->up  = u; iptr++; }
-        }
-        return; 
-      }
-      /* now we must split the interval and evaluate the sturm sequence
-         at the midpoint */
-      { long nm, dem, s0, s1, s2, s, cmid = 0, n;
-        if(nl == min)
-        { if(nr == max) { nm = 0; dem = 0; }
-          else { nm = (nr == 0) ? -1 : 2*nr; dem = 0; }
-        }
-        else
-        { if(nr == max) { nm = (nl == 0) ? 1 : 2*nl; dem = 0; } 
-          else /* "normal" case */
-          { if(del == der) /* then both are zero */
-            { if(((nl+nr) & 1) == 0) { nm = (nl+nr)>>1; dem = 0; }
-              else { nm = nl+nr; dem = 1; } 
-            }
-            else /* here one de* is greater */
-            { if(del > der) { nm = nl + (nr<<(del-der)); dem = del+1; }
-              else { nm = (nl<<(der-del)) + nr; dem = der+1; }
-            }
-          }
-        }
-        s0 = eval_sign(args, sturm[0], sturm_degs[0], nm, dem);
-        s1 = eval_sign(args, sturm[1], sturm_degs[1], nm, dem);
-        if(s0*s1 == -1) { cmid++; }
-        s = (s1 == 0) ? s0 : s1;
-        for(n = 2; n <= k; n++)
-        { s2 = eval_sign(args, sturm[n], sturm_degs[n], nm, dem);
-          if(s2 == -s) { cmid++; s = s2; }
-          else if(s2 != 0) { s = s2; }
-        }
-        /* now recurse */
-        iterate(nl, nm, del, dem, cleft, (s0==0) ? (cmid+1) : cmid, 
-                sl, (s0==0) ? -s1 : s0, depth+1);
-        iterate(nm, nr, dem, der, cmid, cright, 
-                (s0==0) ? s1 : s0, sr, depth+1);
-      }
-    } /* end iterate() */
-
     iterate(min, max, 0, 0, count2, count1, 
-            (degree & 1) ? -slcf : slcf, slcf, 0);
+            (degree & 1) ? -slcf : slcf, slcf, 0,
+	    &iptr, &ivlocal[0], args, k, sturm_degs, sturm);
     num_intervals = iptr - &ivlocal[0];
     /* intersect with given intervals */
     { ratpoints_interval local_copy[num_iv];