1393 lines
54 KiB
Plaintext
1393 lines
54 KiB
Plaintext
\input texinfo
|
||
@c -*-texinfo-*-
|
||
|
||
@c %**start of header
|
||
@setfilename guix.info
|
||
@documentencoding UTF-8
|
||
@settitle GNU Guix Reference Manual
|
||
@c %**end of header
|
||
|
||
@include version.texi
|
||
@set YEARS 2012, 2013
|
||
|
||
@dircategory Package management
|
||
@direntry
|
||
* guix: (guix). Guix, the functional package manager.
|
||
* guix package: (guix)Invoking guix package
|
||
Managing packages with Guix.
|
||
* guix build: (guix)Invoking guix build
|
||
Building packages with Guix.
|
||
@end direntry
|
||
|
||
@titlepage
|
||
@title GNU Guix Reference Manual
|
||
@subtitle Using the GNU Guix Functional Package Manager
|
||
@author Ludovic Courtès
|
||
@author Nikita Karetnikov
|
||
|
||
@page
|
||
@vskip 0pt plus 1filll
|
||
Edition @value{EDITION} @*
|
||
@value{UPDATED} @*
|
||
|
||
Copyright @copyright{} @value{YEARS} Ludovic Court@`es
|
||
|
||
@quotation
|
||
Permission is granted to copy, distribute and/or modify this document
|
||
under the terms of the GNU Free Documentation License, Version 1.3 or
|
||
any later version published by the Free Software Foundation; with no
|
||
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
|
||
copy of the license is included in the section entitled ``GNU Free
|
||
Documentation License''.
|
||
@end quotation
|
||
@end titlepage
|
||
|
||
@copying
|
||
This manual documents GNU Guix version @value{VERSION}.
|
||
|
||
Copyright @copyright{} @value{YEARS} Ludovic Courtès
|
||
|
||
Permission is granted to copy, distribute and/or modify this document
|
||
under the terms of the GNU Free Documentation License, Version 1.3 or
|
||
any later version published by the Free Software Foundation; with no
|
||
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
|
||
copy of the license is included in the section entitled ``GNU Free
|
||
Documentation License.''
|
||
@end copying
|
||
|
||
@contents
|
||
|
||
@c *********************************************************************
|
||
@node Top
|
||
@top GNU Guix
|
||
|
||
This document describes GNU Guix version @value{VERSION}, a functional
|
||
package management tool written for the GNU system.
|
||
|
||
@quotation
|
||
Copyright @copyright{} @value{YEARS} Ludovic Courtès
|
||
|
||
Permission is granted to copy, distribute and/or modify this document
|
||
under the terms of the GNU Free Documentation License, Version 1.3 or
|
||
any later version published by the Free Software Foundation; with no
|
||
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
|
||
copy of the license is included in the section entitled ``GNU Free
|
||
Documentation License.''
|
||
@end quotation
|
||
|
||
@menu
|
||
* Introduction:: What is Guix about?
|
||
* Installation:: Installing Guix.
|
||
* Package Management:: Package installation, upgrade, etc.
|
||
* Programming Interface:: Using Guix in Scheme.
|
||
* Utilities:: Package management commands.
|
||
* GNU Distribution:: Software for your friendly GNU system.
|
||
|
||
* Acknowledgments:: Thanks!
|
||
* GNU Free Documentation License:: The license of this manual.
|
||
* Concept Index:: Concepts.
|
||
* Function Index:: Functions.
|
||
@end menu
|
||
|
||
@c *********************************************************************
|
||
@node Introduction
|
||
@chapter Introduction
|
||
|
||
GNU Guix@footnote{``Guix'' is pronounced like ``geeks'', or ``ɡiːks''
|
||
using the international phonetic alphabet (IPA).} is a functional
|
||
package management tool for the GNU system. Package management consists
|
||
in all the activities that relate to building packages from source,
|
||
honoring the build-time and run-time dependencies on packages,
|
||
installing packages in user environments, upgrading installed packages
|
||
to new versions or rolling back to a previous set, removing unused
|
||
software packages, etc.
|
||
|
||
@cindex functional package management
|
||
The term @dfn{functional} refers to a specific package management
|
||
discipline. In Guix, the package build and installation process is seen
|
||
as a function, in the mathematical sense: that function takes inputs,
|
||
such as build scripts, a compiler, and libraries depended on, and
|
||
returns the installed package. As a pure function, its result depends
|
||
solely on its inputs---for instance, it cannot refer to software or
|
||
scripts that were not explicitly passed as inputs. A build function
|
||
always produces the same result when passed a given set of inputs. Last
|
||
but not least, a build function cannot alter the system's environment in
|
||
any way; for instance, it cannot create, modify, or delete files outside
|
||
of its build and installation directories. This is achieved by running
|
||
build processes in dedicated ``chroots'', where only their explicit
|
||
inputs are visible.
|
||
|
||
@cindex store
|
||
The result of package build functions is @dfn{cached} in the file
|
||
system, in a special directory called @dfn{the store} (@pxref{The
|
||
Store}). Each package is installed in a directory of its own, in the
|
||
store---by default under @file{/nix/store}. The directory name contains
|
||
a hash of all the inputs used to build that package; thus, changing an
|
||
input yields a different directory name.
|
||
|
||
This approach is the foundation of Guix's salient features: support for
|
||
transactional package upgrades and rollback, per-user installation, and
|
||
garbage collection of packages (@pxref{Features}).
|
||
|
||
Guix has a command-line interface allowing users to build, install,
|
||
upgrade, and remove packages, as well as a Scheme programming interface.
|
||
The remainder of this manual describes them.
|
||
|
||
Last but not least, Guix is used to build a distribution of the GNU
|
||
system, with many GNU and non-GNU free software packages. @xref{GNU
|
||
Distribution}.
|
||
|
||
@c *********************************************************************
|
||
@node Installation
|
||
@chapter Installation
|
||
|
||
GNU Guix is available for download from its website at
|
||
@url{http://www.gnu.org/software/guix/}. This section describes the
|
||
software requirements of Guix, as well as how to install it and get
|
||
ready to use it.
|
||
|
||
The build procedure for Guix is the same as for other GNU software, and
|
||
is not covered here. Please see the files @file{README} and
|
||
@file{INSTALL} in the Guix source tree for additional details.
|
||
|
||
@menu
|
||
* Requirements:: Software needed to build and run Guix.
|
||
* Setting Up the Daemon:: Preparing the build daemon's environment.
|
||
* Invoking guix-daemon:: Running the build daemon.
|
||
@end menu
|
||
|
||
@node Requirements
|
||
@section Requirements
|
||
|
||
GNU Guix depends on the following packages:
|
||
|
||
@itemize
|
||
@item @url{http://gnu.org/software/guile/, GNU Guile 2.0.x};
|
||
@item @url{http://gnupg.org/, GNU libgcrypt}
|
||
@end itemize
|
||
|
||
Unless @code{--disable-daemon} was passed to @command{configure}, the
|
||
following packages are also needed:
|
||
|
||
@itemize
|
||
@item @url{http://sqlite.org, SQLite 3}
|
||
@item @url{http://www.bzip.org, libbz2}
|
||
@item @url{http://gcc.gnu.org, GCC's g++}
|
||
@end itemize
|
||
|
||
When a working installation of the Nix package manager is available, you
|
||
can instead configure Guix with @code{--disable-daemon}. In that case,
|
||
@url{http://nixos.org/nix/, Nix} replaces the three dependencies above.
|
||
|
||
Guix is compatible with Nix, so it is possible to share the same store
|
||
between both. To do so, you must pass @command{configure} not only the
|
||
same @code{--with-store-dir} value, but also the same
|
||
@code{--localstatedir} value (the latter is essential because it
|
||
specifies where the database that store meta-data about the store is
|
||
located, among other things.) The default values are
|
||
@code{--with-store-dir=/nix/store} and @code{--localstatedir=/nix/var}.
|
||
Note that @code{--disable-daemon} is orthogonal and is not required if
|
||
your goal is to share the same store as Nix.
|
||
|
||
@node Setting Up the Daemon
|
||
@section Setting Up the Daemon
|
||
|
||
@cindex daemon
|
||
Operations such as building a package or running the garbage collector
|
||
are all performed by a specialized process, the @dfn{Guix daemon}, on
|
||
behalf of clients. Only the daemon may access the store and its
|
||
associated database. Thus, any operation that manipulates the store
|
||
goes through the daemon. For instance, command-line tools such as
|
||
@command{guix package} and @command{guix build} communicate with the
|
||
daemon (@i{via} remote procedure calls) to instruct it what to do.
|
||
|
||
In a standard multi-user setup, Guix and its daemon---the
|
||
@command{guix-daemon} program---are installed by the system
|
||
administrator; @file{/nix/store} is owned by @code{root} and
|
||
@command{guix-daemon} runs as @code{root}. Unprivileged users may use
|
||
Guix tools to build packages or otherwise access the store, and the
|
||
daemon will do it on their behalf, ensuring that the store is kept in a
|
||
consistent state, and allowing built packages to be shared among users.
|
||
|
||
@cindex build users
|
||
When @command{guix-daemon} runs as @code{root}, you may not want package
|
||
build processes themselves to run as @code{root} too, for obvious
|
||
security reasons. To avoid that, a special pool of @dfn{build users}
|
||
should be created for use by build processes started by the daemon.
|
||
These build users need not have a shell and a home directory: they will
|
||
just be used when the daemon drops @code{root} privileges in build
|
||
processes. Having several such users allows the daemon to launch
|
||
distinct build processes under separate UIDs, which guarantees that they
|
||
do not interfere with each other---an essential feature since builds are
|
||
regarded as pure functions (@pxref{Introduction}).
|
||
|
||
On a GNU/Linux system, a build user pool may be created like this (using
|
||
Bash syntax and the @code{shadow} commands):
|
||
|
||
@c See http://lists.gnu.org/archive/html/bug-guix/2013-01/msg00239.html
|
||
@c for why `-G' is needed.
|
||
@example
|
||
# groupadd guix-builder
|
||
# for i in `seq 1 10`;
|
||
do
|
||
useradd -g guix-builder -G guix-builder \
|
||
-d /var/empty -s `which nologin` \
|
||
-c "Guix build user $i" guix-builder$i;
|
||
done
|
||
@end example
|
||
|
||
@noindent
|
||
The @code{guix-daemon} program may then be run as @code{root} with:
|
||
|
||
@example
|
||
# guix-daemon --build-users-group=guix-builder
|
||
@end example
|
||
|
||
Guix may also be used in a single-user setup, with @command{guix-daemon}
|
||
running as an unprivileged user. However, to maximize non-interference
|
||
of build processes, the daemon still needs to perform certain operations
|
||
that are restricted to @code{root} on GNU/Linux: it should be able to
|
||
run build processes in a chroot, and to run them under different UIDs.
|
||
To that end, the @command{nix-setuid-helper} program is provided; it is
|
||
a small C program (less than 300 lines) that, if it is made setuid
|
||
@code{root}, can be executed by the daemon to perform these operations
|
||
on its behalf. The @code{root}-owned @file{/etc/nix-setuid.conf} file
|
||
is read by @command{nix-setuid-helper}; it should contain exactly two
|
||
words: the user name under which the authorized @command{guix-daemon}
|
||
runs, and the name of the build users group.
|
||
|
||
If you are installing Guix as an unprivileged user and do not have the
|
||
ability to make @file{nix-setuid-helper} setuid-@code{root}, it is still
|
||
possible to run @command{guix-daemon}. However, build processes will
|
||
not be isolated from one another, and not from the rest of the system.
|
||
Thus, build processes may interfere with each other, and may access
|
||
programs, libraries, and other files available on the system---making it
|
||
much harder to view them as @emph{pure} functions.
|
||
|
||
@node Invoking guix-daemon
|
||
@section Invoking @command{guix-daemon}
|
||
|
||
The @command{guix-daemon} program implements all the functionality to
|
||
access the store. This includes launching build processes, running the
|
||
garbage collector, querying the availability of a build result, etc. It
|
||
is normally run as @code{root} like this:
|
||
|
||
@example
|
||
# guix-daemon --build-users-group=guix-builder
|
||
@end example
|
||
|
||
@noindent
|
||
For details on how to set it up, @ref{Setting Up the Daemon}.
|
||
|
||
By default, @command{guix-daemon} launches build processes under
|
||
different UIDs, taken from the build group specified with
|
||
@code{--build-users-group}. In addition, each build process is run in a
|
||
chroot environment that only contains the subset of the store that the
|
||
build process depends on, as specified by its derivation
|
||
(@pxref{Programming Interface, derivation}), plus a set of specific
|
||
system directories. By default, the latter contains @file{/dev} and
|
||
@file{/dev/pts}.
|
||
|
||
The following command-line options are supported:
|
||
|
||
@table @code
|
||
@item --build-users-group=@var{group}
|
||
Take users from @var{group} to run build processes (@pxref{Setting Up
|
||
the Daemon, build users}).
|
||
|
||
@item --no-substitutes
|
||
Do not use substitutes for build products. That is, always build things
|
||
locally instead of allowing downloads of pre-built binaries.
|
||
|
||
@item --cache-failures
|
||
Cache build failures. By default, only successful builds are cached.
|
||
|
||
@item --cores=@var{n}
|
||
@itemx -c @var{n}
|
||
Use @var{n} CPU cores to build each derivation; @code{0} means as many
|
||
as available.
|
||
|
||
The default value is @code{1}, but it may be overridden by clients, such
|
||
as the @code{--cores} option of @command{guix build} (@pxref{Invoking
|
||
guix build}).
|
||
|
||
The effect is to define the @code{NIX_BUILD_CORES} environment variable
|
||
in the build process, which can then use it to exploit internal
|
||
parallelism---for instance, by running @code{make -j$NIX_BUILD_CORES}.
|
||
|
||
@item --max-jobs=@var{n}
|
||
@itemx -M @var{n}
|
||
Allow at most @var{n} build jobs in parallel. The default value is
|
||
@code{1}.
|
||
|
||
@item --debug
|
||
Produce debugging output.
|
||
|
||
This is useful to debug daemon start-up issues, but then it may be
|
||
overridden by clients, for example the @code{--verbosity} option of
|
||
@command{guix build} (@pxref{Invoking guix build}).
|
||
|
||
@item --chroot-directory=@var{dir}
|
||
Add @var{dir} to the build chroot.
|
||
|
||
Doing this may change the result of build processes---for instance if
|
||
they use optional dependencies found in @var{dir} when it is available,
|
||
and not otherwise. For that reason, it is not recommended to do so.
|
||
Instead, make sure that each derivation declares all the inputs that it
|
||
needs.
|
||
|
||
@item --disable-chroot
|
||
Disable chroot builds.
|
||
|
||
Using this option is not recommended since, again, it would allow build
|
||
processes to gain access to undeclared dependencies.
|
||
|
||
@item --disable-log-compression
|
||
Disable compression of the build logs.
|
||
|
||
Unless @code{--lose-logs} is used, all the build logs are kept in the
|
||
@var{localstatedir}. To save space, the daemon automatically compresses
|
||
them with bzip2 by default. This option disables that.
|
||
|
||
@item --disable-store-optimization
|
||
Disable automatic file ``deduplication'' in the store.
|
||
|
||
By default, files added to the store are automatically ``deduplicated'':
|
||
if a newly added file is identical as another one found in the store,
|
||
the daemon makes the new file a hard link to the other file. This
|
||
slightly increases the input/output load at the end of a build process.
|
||
This option disables this.
|
||
|
||
@item --impersonate-linux-2.6
|
||
On Linux-based systems, impersonate Linux 2.6. This means that the
|
||
kernel's @code{uname} system call will report 2.6 as the release number.
|
||
|
||
This might be helpful to build programs that (usually wrongfully) depend
|
||
on the kernel version number.
|
||
|
||
@item --lose-logs
|
||
Do not keep build logs. By default they are kept under
|
||
@code{@var{localstatedir}/nix/log}.
|
||
|
||
@item --system=@var{system}
|
||
Assume @var{system} as the current system type. By default it is the
|
||
architecture/kernel pair found at configure time, such as
|
||
@code{x86_64-linux}.
|
||
|
||
@item --listen=@var{socket}
|
||
Listen for connections on @var{socket}, the file name of a Unix-domain
|
||
socket. The default socket is
|
||
@file{@var{localstatedir}/daemon-socket/socket}. This option is only
|
||
useful in exceptional circumstances, such as if you need to run several
|
||
daemons on the same machine.
|
||
@end table
|
||
|
||
|
||
@c *********************************************************************
|
||
@node Package Management
|
||
@chapter Package Management
|
||
|
||
The purpose of GNU Guix is to allow users to easily install, upgrade, and
|
||
remove software packages, without having to know about their build
|
||
procedure or dependencies. Guix also goes beyond this obvious set of
|
||
features.
|
||
|
||
This chapter describes the main features of Guix, as well as the package
|
||
management tools it provides.
|
||
|
||
@menu
|
||
* Features:: How Guix will make your life brighter.
|
||
* Invoking guix package:: Package installation, removal, etc.
|
||
* Invoking guix gc:: Running the garbage collector.
|
||
* Invoking guix pull:: Fetching the latest Guix and distribution.
|
||
@end menu
|
||
|
||
@node Features
|
||
@section Features
|
||
|
||
When using Guix, each package ends up in the @dfn{package store}, in its
|
||
own directory---something that resembles
|
||
@file{/nix/store/xxx-package-1.2}, where @code{xxx} is a base32 string.
|
||
|
||
Instead of referring to these directories, users have their own
|
||
@dfn{profile}, which points to the packages that they actually want to
|
||
use. These profiles are stored within each user's home directory, at
|
||
@code{$HOME/.guix-profile}.
|
||
|
||
For example, @code{alice} installs GCC 4.7.2. As a result,
|
||
@file{/home/alice/.guix-profile/bin/gcc} points to
|
||
@file{/nix/store/@dots{}-gcc-4.7.2/bin/gcc}. Now, on the same machine,
|
||
@code{bob} had already installed GCC 4.8.0. The profile of @code{bob}
|
||
simply continues to point to
|
||
@file{/nix/store/@dots{}-gcc-4.8.0/bin/gcc}---i.e., both versions of GCC
|
||
coexist on the same system without any interference.
|
||
|
||
The @command{guix package} command is the central tool to manage
|
||
packages (@pxref{Invoking guix package}). It operates on those per-user
|
||
profiles, and can be used @emph{with normal user privileges}.
|
||
|
||
The command provides the obvious install, remove, and upgrade
|
||
operations. Each invocation is actually a @emph{transaction}: either
|
||
the specified operation succeeds, or nothing happens. Thus, if the
|
||
@command{guix package} process is terminated during the transaction,
|
||
or if a power outage occurs during the transaction, then the user's
|
||
profile remains in its previous state, and remains usable.
|
||
|
||
In addition, any package transaction may be @emph{rolled back}. So, if,
|
||
for example, an upgrade installs a new version of a package that turns
|
||
out to have a serious bug, users may roll back to the previous instance
|
||
of their profile, which was known to work well.
|
||
|
||
All those packages in the package store may be @emph{garbage-collected}.
|
||
Guix can determine which packages are still referenced by the user
|
||
profiles, and remove those that are provably no longer referenced
|
||
(@pxref{Invoking guix gc}). Users may also explicitly remove old
|
||
generations of their profile so that the packages they refer to can be
|
||
collected.
|
||
|
||
Finally, Guix takes a @dfn{purely functional} approach to package
|
||
management, as described in the introduction (@pxref{Introduction}).
|
||
Each @file{/nix/store} package directory name contains a hash of all the
|
||
inputs that were used to build that package---compiler, libraries, build
|
||
scripts, etc. This direct correspondence allows users to make sure a
|
||
given package installation matches the current state of their
|
||
distribution, and helps maximize @dfn{reproducibility}.
|
||
|
||
This foundation allows Guix to support @dfn{transparent binary/source
|
||
deployment}. When a pre-built binary for a @file{/nix/store} path is
|
||
available from an external source, Guix just downloads it; otherwise, it
|
||
builds the package from source, locally.
|
||
|
||
@node Invoking guix package
|
||
@section Invoking @command{guix package}
|
||
|
||
The @command{guix package} command is the tool that allows users to
|
||
install, upgrade, and remove packages, as well as rolling back to
|
||
previous configurations. It operates only on the user's own profile,
|
||
and works with normal user privileges (@pxref{Features}). Its syntax
|
||
is:
|
||
|
||
@example
|
||
guix package @var{options}
|
||
@end example
|
||
|
||
Primarily, @var{options} specifies the operations to be performed during
|
||
the transaction. Upon completion, a new profile is created, but
|
||
previous generations of the profile remain available, should the user
|
||
want to roll back.
|
||
|
||
For each user, a symlink to the user's default profile is automatically
|
||
created in @file{$HOME/.guix-profile}. This symlink always points to the
|
||
current generation of the user's default profile. Thus, users can add
|
||
@file{$HOME/.guix-profile/bin} to their @code{PATH} environment
|
||
variable, and so on.
|
||
|
||
In a multi-user setup, user profiles must be stored in a place
|
||
registered as a @dfn{garbage-collector root}, which
|
||
@file{$HOME/.guix-profile} points to (@pxref{Invoking guix gc}). That
|
||
directory is normally
|
||
@code{@var{localstatedir}/profiles/per-user/@var{user}}, where
|
||
@var{localstatedir} is the value passed to @code{configure} as
|
||
@code{--localstatedir}, and @var{user} is the user name. It must be
|
||
created by @code{root}, with @var{user} as the owner. When it does not
|
||
exist, @command{guix package} emits an error about it.
|
||
|
||
The @var{options} can be among the following:
|
||
|
||
@table @code
|
||
|
||
@item --install=@var{package}
|
||
@itemx -i @var{package}
|
||
Install @var{package}.
|
||
|
||
@var{package} may specify either a simple package name, such as
|
||
@code{guile}, or a package name followed by a hyphen and version number,
|
||
such as @code{guile-1.8.8}. If no version number is specified, the
|
||
newest available version will be selected. In addition, @var{package}
|
||
may contain a colon, followed by the name of one of the outputs of the
|
||
package, as in @code{gcc:doc} or @code{binutils-2.22:lib}.
|
||
|
||
@cindex propagated inputs
|
||
Sometimes packages have @dfn{propagated inputs}: these are dependencies
|
||
that automatically get installed along with the required package.
|
||
|
||
An example is the GNU MPC library: its C header files refer to those of
|
||
the GNU MPFR library, which in turn refer to those of the GMP library.
|
||
Thus, when installing MPC, the MPFR and GMP libraries also get installed
|
||
in the profile; removing MPC also removes MPFR and GMP---unless they had
|
||
also been explicitly installed independently.
|
||
|
||
Besides, packages sometime rely on the definition of environment
|
||
variables for their search paths (see explanation of
|
||
@code{--search-paths} below.) Any missing or possibly incorrect
|
||
environment variable definitions are reported here.
|
||
|
||
@c XXX: keep me up-to-date
|
||
Finally, when installing a GNU package, the tool reports the
|
||
availability of a newer upstream version. In the future, it may provide
|
||
the option of installing directly from the upstream version, even if
|
||
that version is not yet in the distribution.
|
||
|
||
@item --install-from-expression=@var{exp}
|
||
@itemx -e @var{exp}
|
||
Install the package @var{exp} evaluates to.
|
||
|
||
@var{exp} must be a Scheme expression that evaluates to a
|
||
@code{<package>} object. This option is notably useful to disambiguate
|
||
between same-named variants of a package, with expressions such as
|
||
@code{(@@ (gnu packages base) guile-final)}.
|
||
|
||
Note that this option installs the first output of the specified
|
||
package, which may be insufficient when needing a specific output of a
|
||
multiple-output package.
|
||
|
||
@item --remove=@var{package}
|
||
@itemx -r @var{package}
|
||
Remove @var{package}.
|
||
|
||
@item --upgrade[=@var{regexp}]
|
||
@itemx -u [@var{regexp}]
|
||
Upgrade all the installed packages. When @var{regexp} is specified, upgrade
|
||
only installed packages whose name matches @var{regexp}.
|
||
|
||
Note that this upgrades package to the latest version of packages found
|
||
in the distribution currently installed. To update your distribution,
|
||
you should regularly run @command{guix pull} (@pxref{Invoking guix
|
||
pull}).
|
||
|
||
@item --roll-back
|
||
Roll back to the previous @dfn{generation} of the profile---i.e., undo
|
||
the last transaction.
|
||
|
||
When combined with options such as @code{--install}, roll back occurs
|
||
before any other actions.
|
||
|
||
When rolling back from the first generation that actually contains
|
||
installed packages, the profile is made to point to the @dfn{empty
|
||
profile}, also known as @dfn{profile zero}---i.e., it contains no files
|
||
apart from its own meta-data.
|
||
|
||
Installing, removing, or upgrading packages from a generation that has
|
||
been rolled back to overwrites previous future generations. Thus, the
|
||
history of a profile's generations is always linear.
|
||
|
||
@item --search-paths
|
||
@cindex search paths
|
||
Report environment variable definitions, in Bash syntax, that may be
|
||
needed in order to use the set of installed packages. These environment
|
||
variables are used to specify @dfn{search paths} for files used by some
|
||
of the installed packages.
|
||
|
||
For example, GCC needs the @code{CPATH} and @code{LIBRARY_PATH}
|
||
environment variables to be defined so it can look for headers and
|
||
libraries in the user's profile (@pxref{Environment Variables,,, gcc,
|
||
Using the GNU Compiler Collection (GCC)}). If GCC and, say, the C
|
||
library are installed in the profile, then @code{--search-paths} will
|
||
suggest setting these variables to @code{@var{profile}/include} and
|
||
@code{@var{profile}/lib}, respectively.
|
||
|
||
@item --profile=@var{profile}
|
||
@itemx -p @var{profile}
|
||
Use @var{profile} instead of the user's default profile.
|
||
|
||
@item --dry-run
|
||
@itemx -n
|
||
Show what would be done without actually doing it.
|
||
|
||
@item --no-substitutes
|
||
Build instead of resorting to pre-built substitutes.
|
||
|
||
@item --verbose
|
||
Produce verbose output. In particular, emit the environment's build log
|
||
on the standard error port.
|
||
|
||
@item --bootstrap
|
||
Use the bootstrap Guile to build the profile. This option is only
|
||
useful to distribution developers.
|
||
|
||
@end table
|
||
|
||
In addition to these actions @command{guix package} supports the
|
||
following options to query the current state of a profile, or the
|
||
availability of packages:
|
||
|
||
@table @option
|
||
|
||
@item --search=@var{regexp}
|
||
@itemx -s @var{regexp}
|
||
List the available packages whose synopsis or description matches
|
||
@var{regexp}. Print all the meta-data of matching packages in
|
||
@code{recutils} format (@pxref{Top, GNU recutils databases,, recutils,
|
||
GNU recutils manual}).
|
||
|
||
This allows specific fields to be extracted using the @command{recsel}
|
||
command, for instance:
|
||
|
||
@example
|
||
$ guix package -s malloc | recsel -p name,version
|
||
name: glibc
|
||
version: 2.17
|
||
|
||
name: libgc
|
||
version: 7.2alpha6
|
||
@end example
|
||
|
||
@item --list-installed[=@var{regexp}]
|
||
@itemx -I [@var{regexp}]
|
||
List currently installed packages in the specified profile. When
|
||
@var{regexp} is specified, list only installed packages whose name
|
||
matches @var{regexp}.
|
||
|
||
For each installed package, print the following items, separated by
|
||
tabs: the package name, its version string, the part of the package that
|
||
is installed (for instance, @code{out} for the default output,
|
||
@code{include} for its headers, etc.), and the path of this package in
|
||
the store.
|
||
|
||
@item --list-available[=@var{regexp}]
|
||
@itemx -A [@var{regexp}]
|
||
List packages currently available in the software distribution
|
||
(@pxref{GNU Distribution}). When @var{regexp} is specified, list only
|
||
installed packages whose name matches @var{regexp}.
|
||
|
||
For each package, print the following items separated by tabs: its name,
|
||
its version string, the parts of the package (@code{out} for the main
|
||
files, @code{lib} for libraries and possibly headers, etc.), and the
|
||
source location of its definition.
|
||
|
||
@end table
|
||
|
||
|
||
@node Invoking guix gc
|
||
@section Invoking @command{guix gc}
|
||
|
||
@cindex garbage collector
|
||
Packages that are installed but not used may be @dfn{garbage-collected}.
|
||
The @command{guix gc} command allows users to explicitly run the garbage
|
||
collector to reclaim space from the @file{/nix/store} directory.
|
||
|
||
The garbage collector has a set of known @dfn{roots}: any file under
|
||
@file{/nix/store} reachable from a root is considered @dfn{live} and
|
||
cannot be deleted; any other file is considered @dfn{dead} and may be
|
||
deleted. The set of garbage collector roots includes default user
|
||
profiles, and may be augmented with @command{guix build --root}, for
|
||
example (@pxref{Invoking guix build}).
|
||
|
||
The @command{guix gc} command has three modes of operation: it can be
|
||
used to garbage-collect any dead files (the default), to delete specific
|
||
files (the @code{--delete} option), or to print garbage-collector
|
||
information. The available options are listed below:
|
||
|
||
@table @code
|
||
@item --collect-garbage[=@var{min}]
|
||
@itemx -C [@var{min}]
|
||
Collect garbage---i.e., unreachable @file{/nix/store} files and
|
||
sub-directories. This is the default operation when no option is
|
||
specified.
|
||
|
||
When @var{min} is given, stop once @var{min} bytes have been collected.
|
||
@var{min} may be a number of bytes, or it may include a unit as a
|
||
suffix, such as @code{MiB} for mebibytes and @code{GB} for gigabytes.
|
||
|
||
When @var{min} is omitted, collect all the garbage.
|
||
|
||
@item --delete
|
||
@itemx -d
|
||
Attempt to delete all the store files and directories specified as
|
||
arguments. This fails if some of the files are not in the store, or if
|
||
they are still live.
|
||
|
||
@item --list-dead
|
||
Show the list of dead files and directories still present in the
|
||
store---i.e., files and directories no longer reachable from any root.
|
||
|
||
@item --list-live
|
||
Show the list of live store files and directories.
|
||
|
||
@end table
|
||
|
||
In addition, the references among existing store files can be queried:
|
||
|
||
@table @code
|
||
|
||
@item --references
|
||
@itemx --referrers
|
||
List the references (respectively, the referrers) of store files given
|
||
as arguments.
|
||
|
||
@end table
|
||
|
||
|
||
@node Invoking guix pull
|
||
@section Invoking @command{guix pull}
|
||
|
||
Packages are installed or upgraded to the latest version available in
|
||
the distribution currently available on your local machine. To update
|
||
that distribution, along with the Guix tools, you must run @command{guix
|
||
pull}: the command downloads the latest Guix source code and package
|
||
descriptions, and deploys it.
|
||
|
||
On completion, @command{guix package} will use packages and package
|
||
versions from this just-retrieved copy of Guix. Not only that, but all
|
||
the Guix commands and Scheme modules will also be taken from that latest
|
||
version. New @command{guix} sub-commands added by the update also
|
||
become available.
|
||
|
||
The @command{guix pull} command is usually invoked with no arguments,
|
||
but it supports the following options:
|
||
|
||
@table @code
|
||
@item --verbose
|
||
Produce verbose output, writing build logs to the standard error output.
|
||
|
||
@item --bootstrap
|
||
Use the bootstrap Guile to build the latest Guix. This option is only
|
||
useful to Guix developers.
|
||
@end table
|
||
|
||
@c *********************************************************************
|
||
@node Programming Interface
|
||
@chapter Programming Interface
|
||
|
||
GNU Guix provides several Scheme programming interfaces (APIs) to
|
||
define, build, and query packages. The first interface allows users to
|
||
write high-level package definitions. These definitions refer to
|
||
familiar packaging concepts, such as the name and version of a package,
|
||
its build system, and its dependencies. These definitions can then be
|
||
turned into concrete build actions.
|
||
|
||
Build actions are performed by the Guix daemon, on behalf of users. In a
|
||
standard setup, the daemon has write access to the store---the
|
||
@file{/nix/store} directory---whereas users do not. The recommended
|
||
setup also has the daemon perform builds in chroots, under a specific
|
||
build users, to minimize interference with the rest of the system.
|
||
|
||
@cindex derivation
|
||
Lower-level APIs are available to interact with the daemon and the
|
||
store. To instruct the daemon to perform a build action, users actually
|
||
provide it with a @dfn{derivation}. A derivation is a low-level
|
||
representation of the build actions to be taken, and the environment in
|
||
which they should occur---derivations are to package definitions what
|
||
assembly is to C programs.
|
||
|
||
This chapter describes all these APIs in turn, starting from high-level
|
||
package definitions.
|
||
|
||
@menu
|
||
* Defining Packages:: Defining new packages.
|
||
* The Store:: Manipulating the package store.
|
||
* Derivations:: Low-level interface to package derivations.
|
||
@end menu
|
||
|
||
@node Defining Packages
|
||
@section Defining Packages
|
||
|
||
The high-level interface to package definitions is implemented in the
|
||
@code{(guix packages)} and @code{(guix build-system)} modules. As an
|
||
example, the package definition, or @dfn{recipe}, for the GNU Hello
|
||
package looks like this:
|
||
|
||
@example
|
||
(use-modules (guix packages)
|
||
(guix download)
|
||
(guix build-system gnu)
|
||
(guix licenses))
|
||
|
||
(define hello
|
||
(package
|
||
(name "hello")
|
||
(version "2.8")
|
||
(source (origin
|
||
(method url-fetch)
|
||
(uri (string-append "mirror://gnu/hello/hello-" version
|
||
".tar.gz"))
|
||
(sha256
|
||
(base32 "0wqd8sjmxfskrflaxywc7gqw7sfawrfvdxd9skxawzfgyy0pzdz6"))))
|
||
(build-system gnu-build-system)
|
||
(inputs `(("gawk" ,gawk)))
|
||
(synopsis "GNU Hello")
|
||
(description "Yeah...")
|
||
(home-page "http://www.gnu.org/software/hello/")
|
||
(license gpl3+)))
|
||
@end example
|
||
|
||
@noindent
|
||
Without being a Scheme expert, the reader may have guessed the meaning
|
||
of the various fields here. This expression binds variable @var{hello}
|
||
to a @code{<package>} object, which is essentially a record
|
||
(@pxref{SRFI-9, Scheme records,, guile, GNU Guile Reference Manual}).
|
||
This package object can be inspected using procedures found in the
|
||
@code{(guix packages)} module; for instance, @code{(package-name hello)}
|
||
returns---surprise!---@code{"hello"}.
|
||
|
||
There are a few points worth noting in the above package definition:
|
||
|
||
@itemize
|
||
@item
|
||
The @code{source} field of the package is an @code{<origin>} object.
|
||
Here, the @code{url-fetch} method from @code{(guix download)} is used,
|
||
meaning that the source is a file to be downloaded over FTP or HTTP.
|
||
|
||
The @code{mirror://gnu} prefix instructs @code{url-fetch} to use one of
|
||
the GNU mirrors defined in @code{(guix download)}.
|
||
|
||
The @code{sha256} field specifies the expected SHA256 hash of the file
|
||
being downloaded. It is mandatory, and allows Guix to check the
|
||
integrity of the file. The @code{(base32 @dots{})} form introduces the
|
||
base32 representation of the hash. You can obtain this information with
|
||
the @code{guix hash} (@pxref{Invoking guix hash}) and @code{guix
|
||
download} tools.
|
||
|
||
@item
|
||
@cindex GNU Build System
|
||
The @code{build-system} field is set to @var{gnu-build-system}. The
|
||
@var{gnu-build-system} variable is defined in the @code{(guix
|
||
build-system gnu)} module, and is bound to a @code{<build-system>}
|
||
object.
|
||
|
||
Naturally, @var{gnu-build-system} represents the familiar GNU Build
|
||
System, and variants thereof (@pxref{Configuration, configuration and
|
||
makefile conventions,, standards, GNU Coding Standards}). In a
|
||
nutshell, packages using the GNU Build System may be configured, built,
|
||
and installed with the usual @code{./configure && make && make check &&
|
||
make install} command sequence. This is what @var{gnu-build-system}
|
||
does.
|
||
|
||
In addition, @var{gnu-build-system} ensures that the ``standard''
|
||
environment for GNU packages is available. This includes tools such as
|
||
GCC, Coreutils, Bash, Make, Diffutils, and Patch.
|
||
|
||
@item
|
||
The @code{inputs} field specifies inputs to the build process---i.e.,
|
||
build-time or run-time dependencies of the package. Here, we define an
|
||
input called @code{"gawk"} whose value is that of the @var{gawk}
|
||
variable; @var{gawk} is itself bound to a @code{<package>} object.
|
||
|
||
Note that GCC, Coreutils, Bash, and other essential tools do not need to
|
||
be specified as inputs here. Instead, @var{gnu-build-system} takes care
|
||
of ensuring that they are present.
|
||
|
||
However, any other dependencies need to be specified in the
|
||
@code{inputs} field. Any dependency not specified here will simply be
|
||
unavailable to the build process, possibly leading to a build failure.
|
||
@end itemize
|
||
|
||
There are other fields that package definitions may provide. Of
|
||
particular interest is the @code{arguments} field. When specified, it
|
||
must be bound to a list of additional arguments to be passed to the
|
||
build system. For instance, the above definition could be augmented
|
||
with the following field initializer:
|
||
|
||
@example
|
||
(arguments `(#:tests? #f
|
||
#:configure-flags '("--enable-silent-rules")))
|
||
@end example
|
||
|
||
@noindent
|
||
These are keyword arguments (@pxref{Optional Arguments, keyword
|
||
arguments in Guile,, guile, GNU Guile Reference Manual}). They are
|
||
passed to @var{gnu-build-system}, which interprets them as meaning ``do
|
||
not run @code{make check}'', and ``run @file{configure} with the
|
||
@code{--enable-silent-rules} flag''. The value of these keyword
|
||
parameters is actually evaluated in the @dfn{build stratum}---i.e., by a
|
||
Guile process launched by the daemon (@pxref{Derivations}).
|
||
|
||
Once a package definition is in place@footnote{Simple package
|
||
definitions like the one above may be automatically converted from the
|
||
Nixpkgs distribution using the @command{guix import} command.}, the
|
||
package may actually be built using the @code{guix build} command-line
|
||
tool (@pxref{Invoking guix build}). Eventually, updating the package
|
||
definition to a new upstream version can be partly automated by the
|
||
@command{guix refresh} command (@pxref{Invoking guix refresh}).
|
||
|
||
Behind the scenes, a derivation corresponding to the @code{<package>}
|
||
object is first computed by the @code{package-derivation} procedure.
|
||
That derivation is stored in a @code{.drv} file under @file{/nix/store}.
|
||
The build actions it prescribes may then be realized by using the
|
||
@code{build-derivations} procedure (@pxref{The Store}).
|
||
|
||
@deffn {Scheme Procedure} package-derivation @var{store} @var{package} [@var{system}]
|
||
Return the derivation path and corresponding @code{<derivation>} object
|
||
of @var{package} for @var{system} (@pxref{Derivations}).
|
||
|
||
@var{package} must be a valid @code{<package>} object, and @var{system}
|
||
must be a string denoting the target system type---e.g.,
|
||
@code{"x86_64-linux"} for an x86_64 Linux-based GNU system. @var{store}
|
||
must be a connection to the daemon, which operates on the store
|
||
(@pxref{The Store}).
|
||
@end deffn
|
||
|
||
@node The Store
|
||
@section The Store
|
||
|
||
@cindex store
|
||
@cindex store paths
|
||
|
||
Conceptually, the @dfn{store} is where derivations that have been
|
||
successfully built are stored---by default, under @file{/nix/store}.
|
||
Sub-directories in the store are referred to as @dfn{store paths}. The
|
||
store has an associated database that contains information such has the
|
||
store paths referred to by each store path, and the list of @emph{valid}
|
||
store paths---paths that result from a successful build.
|
||
|
||
The store is always accessed by the daemon on behalf of its clients
|
||
(@pxref{Invoking guix-daemon}). To manipulate the store, clients
|
||
connect to the daemon over a Unix-domain socket, send it requests, and
|
||
read the result---these are remote procedure calls, or RPCs.
|
||
|
||
The @code{(guix store)} module provides procedures to connect to the
|
||
daemon, and to perform RPCs. These are described below.
|
||
|
||
@deffn {Scheme Procedure} open-connection [@var{file}] [#:reserve-space? #t]
|
||
Connect to the daemon over the Unix-domain socket at @var{file}. When
|
||
@var{reserve-space?} is true, instruct it to reserve a little bit of
|
||
extra space on the file system so that the garbage collector can still
|
||
operate, should the disk become full. Return a server object.
|
||
|
||
@var{file} defaults to @var{%default-socket-path}, which is the normal
|
||
location given the options that were passed to @command{configure}.
|
||
@end deffn
|
||
|
||
@deffn {Scheme Procedure} close-connection @var{server}
|
||
Close the connection to @var{server}.
|
||
@end deffn
|
||
|
||
@defvr {Scheme Variable} current-build-output-port
|
||
This variable is bound to a SRFI-39 parameter, which refers to the port
|
||
where build and error logs sent by the daemon should be written.
|
||
@end defvr
|
||
|
||
Procedures that make RPCs all take a server object as their first
|
||
argument.
|
||
|
||
@deffn {Scheme Procedure} valid-path? @var{server} @var{path}
|
||
Return @code{#t} when @var{path} is a valid store path.
|
||
@end deffn
|
||
|
||
@deffn {Scheme Procedure} add-text-to-store @var{server} @var{name} @var{text} @var{references}
|
||
Add @var{text} under file @var{name} in the store, and return its store
|
||
path. @var{references} is the list of store paths referred to by the
|
||
resulting store path.
|
||
@end deffn
|
||
|
||
@deffn {Scheme Procedure} build-derivations @var{server} @var{derivations}
|
||
Build @var{derivations} (a list of derivation paths), and return when
|
||
the worker is done building them. Return @code{#t} on success.
|
||
@end deffn
|
||
|
||
@c FIXME
|
||
@i{This section is currently incomplete.}
|
||
|
||
@node Derivations
|
||
@section Derivations
|
||
|
||
@cindex derivations
|
||
Low-level build actions and the environment in which they are performed
|
||
are represented by @dfn{derivations}. A derivation contain the
|
||
following pieces of information:
|
||
|
||
@itemize
|
||
@item
|
||
The outputs of the derivation---derivations produce at least one file or
|
||
directory in the store, but may produce more.
|
||
|
||
@item
|
||
The inputs of the derivations, which may be other derivations or plain
|
||
files in the store (patches, build scripts, etc.)
|
||
|
||
@item
|
||
The system type targeted by the derivation---e.g., @code{x86_64-linux}.
|
||
|
||
@item
|
||
The file name of a build script in the store, along with the arguments
|
||
to be passed.
|
||
|
||
@item
|
||
A list of environment variables to be defined.
|
||
|
||
@end itemize
|
||
|
||
@cindex derivation path
|
||
Derivations allow clients of the daemon to communicate build actions to
|
||
the store. They exist in two forms: as an in-memory representation,
|
||
both on the client- and daemon-side, and as files in the store whose
|
||
name end in @code{.drv}---these files are referred to as @dfn{derivation
|
||
paths}. Derivations paths can be passed to the @code{build-derivations}
|
||
procedure to perform the build actions they prescribe (@pxref{The
|
||
Store}).
|
||
|
||
The @code{(guix derivations)} module provides a representation of
|
||
derivations as Scheme objects, along with procedures to create and
|
||
otherwise manipulate derivations. The lowest-level primitive to create
|
||
a derivation is the @code{derivation} procedure:
|
||
|
||
@deffn {Scheme Procedure} derivation @var{store} @var{name} @var{system} @var{builder} @var{args} @var{env-vars} @var{inputs} [#:outputs '("out")] [#:hash #f] [#:hash-algo #f] [#:hash-mode #f]
|
||
Build a derivation with the given arguments. Return the resulting store
|
||
path and @code{<derivation>} object.
|
||
|
||
When @var{hash}, @var{hash-algo}, and @var{hash-mode} are given, a
|
||
@dfn{fixed-output derivation} is created---i.e., one whose result is
|
||
known in advance, such as a file download.
|
||
@end deffn
|
||
|
||
@noindent
|
||
Here's an example with a shell script as its builder, assuming
|
||
@var{store} is an open connection to the daemon, and @var{bash} points
|
||
to a Bash executable in the store:
|
||
|
||
@lisp
|
||
(use-modules (guix utils)
|
||
(guix store)
|
||
(guix derivations))
|
||
|
||
(call-with-values
|
||
(lambda ()
|
||
(let ((builder ; add the Bash script to the store
|
||
(add-text-to-store store "my-builder.sh"
|
||
"echo hello world > $out\n" '())))
|
||
(derivation store "foo" (%current-system)
|
||
bash `("-e" ,builder)
|
||
'(("HOME" . "/homeless")) '())))
|
||
list)
|
||
@result{} ("/nix/store/@dots{}-foo.drv" #<<derivation> @dots{}>)
|
||
@end lisp
|
||
|
||
As can be guessed, this primitive is cumbersome to use directly. An
|
||
improved variant is @code{build-expression->derivation}, which allows
|
||
the caller to directly pass a Guile expression as the build script:
|
||
|
||
@deffn {Scheme Procedure} build-expression->derivation @var{store} @var{name} @var{system} @var{exp} @var{inputs} [#:outputs '("out")] [#:hash #f] [#:hash-algo #f] [#:env-vars '()] [#:modules '()] [#:guile-for-build #f]
|
||
Return a derivation that executes Scheme expression @var{exp} as a
|
||
builder for derivation @var{name}. @var{inputs} must be a list of
|
||
@code{(name drv-path sub-drv)} tuples; when @var{sub-drv} is omitted,
|
||
@code{"out"} is assumed. @var{modules} is a list of names of Guile
|
||
modules from the current search path to be copied in the store,
|
||
compiled, and made available in the load path during the execution of
|
||
@var{exp}---e.g., @code{((guix build utils) (guix build
|
||
gnu-build-system))}.
|
||
|
||
@var{exp} is evaluated in an environment where @code{%outputs} is bound
|
||
to a list of output/path pairs, and where @code{%build-inputs} is bound
|
||
to a list of string/output-path pairs made from @var{inputs}.
|
||
Optionally, @var{env-vars} is a list of string pairs specifying the name
|
||
and value of environment variables visible to the builder. The builder
|
||
terminates by passing the result of @var{exp} to @code{exit}; thus, when
|
||
@var{exp} returns @code{#f}, the build is considered to have failed.
|
||
|
||
@var{exp} is built using @var{guile-for-build} (a derivation). When
|
||
@var{guile-for-build} is omitted or is @code{#f}, the value of the
|
||
@code{%guile-for-build} fluid is used instead.
|
||
@end deffn
|
||
|
||
@noindent
|
||
Here's an example of a single-output derivation that creates a directory
|
||
containing one file:
|
||
|
||
@lisp
|
||
(let ((builder '(let ((out (assoc-ref %outputs "out")))
|
||
(mkdir out) ; create /nix/store/@dots{}-goo
|
||
(call-with-output-file (string-append out "/test")
|
||
(lambda (p)
|
||
(display '(hello guix) p))))))
|
||
(build-expression->derivation store "goo" (%current-system)
|
||
builder '()))
|
||
|
||
@result{} "/nix/store/@dots{}-goo.drv"
|
||
@result{} #<<derivation> @dots{}>
|
||
@end lisp
|
||
|
||
@cindex strata of code
|
||
Remember that the build expression passed to
|
||
@code{build-expression->derivation} is run by a separate Guile process
|
||
than the one that calls @code{build-expression->derivation}: it is run
|
||
by a Guile process launched by the daemon, typically in a chroot. So,
|
||
while there is a single language for both the @dfn{host} and the build
|
||
side, there are really two @dfn{strata} of code: the host-side, and the
|
||
build-side code@footnote{The term @dfn{stratum} in this context was
|
||
coined by Manuel Serrano et al. in the context of their work on Hop.}.
|
||
This distinction is important to keep in mind, notably when using
|
||
higher-level constructs such as @var{gnu-build-system} (@pxref{Defining
|
||
Packages}). For this reason, Guix modules that are meant to be used in
|
||
the build stratum are kept in the @code{(guix build @dots{})} name
|
||
space.
|
||
|
||
@c *********************************************************************
|
||
@node Utilities
|
||
@chapter Utilities
|
||
|
||
@menu
|
||
* Invoking guix build:: Building packages from the command line.
|
||
* Invoking guix hash:: Computing the cryptographic hash of a file.
|
||
* Invoking guix refresh:: Updating package definitions.
|
||
@end menu
|
||
|
||
@node Invoking guix build
|
||
@section Invoking @command{guix build}
|
||
|
||
The @command{guix build} command builds packages or derivations and
|
||
their dependencies, and prints the resulting store paths. Note that it
|
||
does not modify the user's profile---this is the job of the
|
||
@command{guix package} command (@pxref{Invoking guix package}). Thus,
|
||
it is mainly useful for distribution developers.
|
||
|
||
The general syntax is:
|
||
|
||
@example
|
||
guix build @var{options} @var{package-or-derivation}@dots{}
|
||
@end example
|
||
|
||
@var{package-or-derivation} may be either the name of a package found in
|
||
the software distribution such as @code{coreutils} or
|
||
@code{coreutils-8.20}, or a derivation such as
|
||
@file{/nix/store/@dots{}-coreutils-8.19.drv}. Alternatively, the
|
||
@code{--expression} option may be used to specify a Scheme expression
|
||
that evaluates to a package; this is useful when disambiguation among
|
||
several same-named packages or package variants is needed.
|
||
|
||
The @var{options} may be zero or more of the following:
|
||
|
||
@table @code
|
||
|
||
@item --expression=@var{expr}
|
||
@itemx -e @var{expr}
|
||
Build the package @var{expr} evaluates to.
|
||
|
||
For example, @var{expr} may be @code{(@@ (gnu packages guile)
|
||
guile-1.8)}, which unambiguously designates this specific variant of
|
||
version 1.8 of Guile.
|
||
|
||
@item --source
|
||
@itemx -S
|
||
Build the packages' source derivations, rather than the packages
|
||
themselves.
|
||
|
||
For instance, @code{guix build -S gcc} returns something like
|
||
@file{/nix/store/@dots{}-gcc-4.7.2.tar.bz2}, which is GCC's source tarball.
|
||
|
||
@item --system=@var{system}
|
||
@itemx -s @var{system}
|
||
Attempt to build for @var{system}---e.g., @code{i686-linux}---instead of
|
||
the host's system type.
|
||
|
||
An example use of this is on Linux-based systems, which can emulate
|
||
different personalities. For instance, passing
|
||
@code{--system=i686-linux} on an @code{x86_64-linux} system allows users
|
||
to build packages in a complete 32-bit environment.
|
||
|
||
@item --derivations
|
||
@itemx -d
|
||
Return the derivation paths, not the output paths, of the given
|
||
packages.
|
||
|
||
@item --keep-failed
|
||
@itemx -K
|
||
Keep the build tree of failed builds. Thus, if a build fail, its build
|
||
tree is kept under @file{/tmp}, in a directory whose name is shown at
|
||
the end of the build log. This is useful when debugging build issues.
|
||
|
||
@item --dry-run
|
||
@itemx -n
|
||
Do not build the derivations.
|
||
|
||
@item --no-substitutes
|
||
Build instead of resorting to pre-built substitutes.
|
||
|
||
@item --cores=@var{n}
|
||
@itemx -c @var{n}
|
||
Allow the use of up to @var{n} CPU cores for the build. The special
|
||
value @code{0} means to use as many CPU cores as available.
|
||
|
||
@item --root=@var{file}
|
||
@itemx -r @var{file}
|
||
Make @var{file} a symlink to the result, and register it as a garbage
|
||
collector root.
|
||
|
||
@item --verbosity=@var{level}
|
||
Use the given verbosity level. @var{level} must be an integer between 0
|
||
and 5; higher means more verbose output. Setting a level of 4 or more
|
||
may be helpful when debugging setup issues with the build daemon.
|
||
|
||
@end table
|
||
|
||
Behind the scenes, @command{guix build} is essentially an interface to
|
||
the @code{package-derivation} procedure of the @code{(guix packages)}
|
||
module, and to the @code{build-derivations} procedure of the @code{(guix
|
||
store)} module.
|
||
|
||
@node Invoking guix hash
|
||
@section Invoking @command{guix hash}
|
||
|
||
The @command{guix hash} command allows to check the integrity of a file.
|
||
It is primarily a convenience tool for anyone contributing to the
|
||
distribution: it computes the cryptographic hash of a file, which can be
|
||
used in the definition of a package (@pxref{Defining Packages}).
|
||
|
||
The general syntax is:
|
||
|
||
@example
|
||
guix hash @var{option} @var{file}
|
||
@end example
|
||
|
||
@command{guix hash} has the following option:
|
||
|
||
@table @code
|
||
|
||
@item --format=@var{fmt}
|
||
@itemx -f @var{fmt}
|
||
Write the hash in the given format.
|
||
|
||
Supported formats: @code{nix-base32}, @code{base32}, @code{base16}
|
||
(@code{hex} and @code{hexadecimal} can be used as well).
|
||
|
||
If the @option{--format} option is not specified, @command{guix hash}
|
||
will output the hash in @code{nix-base32}. This representation is used
|
||
in the definitions of packages.
|
||
|
||
@end table
|
||
|
||
@node Invoking guix refresh
|
||
@section Invoking @command{guix refresh}
|
||
|
||
The primary audience of the @command{guix refresh} command is developers
|
||
of the GNU software distribution. By default, it reports any packages
|
||
provided by the distribution that are outdated compared to the latest
|
||
upstream version, like this:
|
||
|
||
@example
|
||
$ guix refresh
|
||
gnu/packages/gettext.scm:29:13: gettext would be upgraded from 0.18.1.1 to 0.18.2.1
|
||
gnu/packages/glib.scm:77:12: glib would be upgraded from 2.34.3 to 2.37.0
|
||
@end example
|
||
|
||
It does so by browsing each package's FTP directory and determining the
|
||
highest version number of the source tarballs
|
||
therein@footnote{Currently, this only works for GNU packages.}.
|
||
|
||
When passed @code{--update}, it modifies distribution source files to
|
||
update the version numbers and source tarball hashes of those packages'
|
||
recipes (@pxref{Defining Packages}). This is achieved by downloading
|
||
each package's latest source tarball and its associated OpenPGP
|
||
signature, authenticating the downloaded tarball against its signature
|
||
using @command{gpg}, and finally computing its hash. When the public
|
||
key used to sign the tarball is missing from the user's keyring, an
|
||
attempt is made to automatically retrieve it from a public key server;
|
||
when it's successful, the key is added to the user's keyring; otherwise,
|
||
@command{guix refresh} reports an error.
|
||
|
||
The following options are supported:
|
||
|
||
@table @code
|
||
|
||
@item --update
|
||
@itemx -u
|
||
Update distribution source files (package recipes) in place.
|
||
@ref{Defining Packages}, for more information on package definitions.
|
||
|
||
@item --select=[@var{subset}]
|
||
@itemx -s @var{subset}
|
||
Select all the packages in @var{subset}, one of @code{core} or
|
||
@code{non-core}.
|
||
|
||
The @code{core} subset refers to all the packages at the core of the
|
||
distribution---i.e., packages that are used to build ``everything
|
||
else''. This includes GCC, libc, Binutils, Bash, etc. Usually,
|
||
changing one of these packages in the distribution entails a rebuild of
|
||
all the others. Thus, such updates are an inconvenience to users in
|
||
terms of build time or bandwidth used to achieve the upgrade.
|
||
|
||
The @code{non-core} subset refers to the remaining packages. It is
|
||
typically useful in cases where an update of the core packages would be
|
||
inconvenient.
|
||
|
||
@end table
|
||
|
||
In addition, @command{guix refresh} can be passed one or more package
|
||
names, as in this example:
|
||
|
||
@example
|
||
guix refresh -u emacs idutils
|
||
@end example
|
||
|
||
@noindent
|
||
The command above specifically updates the @code{emacs} and
|
||
@code{idutils} packages. The @code{--select} option would have no
|
||
effect in this case.
|
||
|
||
|
||
@c *********************************************************************
|
||
@node GNU Distribution
|
||
@chapter GNU Distribution
|
||
|
||
Guix comes with a distribution of free software@footnote{The term
|
||
``free'' here refers to the
|
||
@url{http://www.gnu.org/philosophy/free-sw.html,freedom provided to
|
||
users of that software}.} that form the basis of the GNU system. This
|
||
includes core GNU packages such as GNU libc, GCC, and Binutils, as well
|
||
as many GNU and non-GNU applications. The complete list of available
|
||
packages can be seen by running @command{guix package} (@pxref{Invoking
|
||
guix package}):
|
||
|
||
@example
|
||
guix package --list-available
|
||
@end example
|
||
|
||
The package definitions of the distribution may are provided by Guile
|
||
modules in the @code{(gnu packages ...)} name space---for instance, the
|
||
@code{(gnu packages emacs)} module exports a variable named
|
||
@code{emacs}, which is bound to a @code{<package>} object
|
||
(@pxref{Defining Packages}). The @code{(gnu packages)} module provides
|
||
facilities for searching for packages.
|
||
|
||
The distribution is fully @dfn{bootstrapped} and @dfn{self-contained}:
|
||
each package is built based solely on other packages in the
|
||
distribution. The root of this dependency graph is a small set of
|
||
@dfn{bootstrap binaries}, provided by the @code{(gnu packages
|
||
bootstrap)} module. These are statically-linked binaries of the core
|
||
tools without which building anything at all would be impossible.
|
||
|
||
|
||
Our goal is to build a practical 100% free software distribution of
|
||
Linux-based and other variants of GNU, with a focus on the promotion and
|
||
tight integration of GNU components, and an emphasis on programs and
|
||
tools that help users exert that freedom.
|
||
|
||
Building this distribution is a cooperative effort, and you are invited
|
||
to join! Please get in touch with us on @email{bug-guix@@gnu.org}. We
|
||
welcome ideas, bug reports, patches, and anything that may be helpful to
|
||
the project.
|
||
|
||
|
||
@c *********************************************************************
|
||
@node Acknowledgments
|
||
@chapter Acknowledgments
|
||
|
||
Guix is based on the Nix package manager, which was designed and
|
||
implemented by Eelco Dolstra. Nix pioneered functional package
|
||
management, and promoted unprecedented features, such as transactional
|
||
package upgrades and rollbacks, per-user profiles, and referentially
|
||
transparent build processes. Without this work, Guix would not exist.
|
||
|
||
The Nix-based software distributions, Nixpkgs and NixOS, have also been
|
||
an inspiration for Guix.
|
||
|
||
@c *********************************************************************
|
||
@node GNU Free Documentation License
|
||
@appendix GNU Free Documentation License
|
||
|
||
@include fdl-1.3.texi
|
||
|
||
@c *********************************************************************
|
||
@node Concept Index
|
||
@unnumbered Concept Index
|
||
@printindex cp
|
||
|
||
@node Function Index
|
||
@unnumbered Function Index
|
||
@printindex fn
|
||
|
||
@bye
|
||
|
||
@c Local Variables:
|
||
@c ispell-local-dictionary: "american";
|
||
@c End:
|