Text changes.

master
Albert Graef 2018-08-12 12:07:23 +02:00
parent abd85f4931
commit b6c6188b16
1 changed files with 5 additions and 5 deletions

View File

@ -86,11 +86,11 @@ A5-1[D]: XK_Down/D
A5-1[U]: XK_Down/U
~~~
It goes without saying that these debugging options will be very helpful when you start developing your own bindings. The `-d` option can be combined with various option characters to choose exactly which kinds of debugging output you want; `r` ("regex") prints the matched translation section (if any) along with the window name and class of the focused window; `s` ("strokes") prints the parsed contents of the configuration file in a human-readable form whenever the file is loaded; `k` ("keys") shows the recognized translations as the program executes them, in the same format as `s`; `m` ("MIDI") to print *any* MIDI input, so that you can figure out which MIDI tokens to use for configuring the translations for your controller; and `j` adds some debugging output from the Jack driver. You can also just use `-d` to enable all debugging output. (Most of these options are also available as directives in the midizaprc file; please check the distributed example.midizaprc for details.)
It goes without saying that these debugging options will be very helpful when you start developing your own bindings. The `-d` option can be combined with various option characters to choose exactly which kinds of debugging output you want; `r` ("regex") prints the matched translation section (if any) along with the window name and class of the focused window; `s` ("strokes") prints the parsed contents of the configuration file in a human-readable form whenever the file is loaded; `k` ("keys") shows the recognized translations as the program executes them, in the same format as `s`; `m` ("MIDI") prints *any* MIDI input, so that you can figure out which MIDI tokens to use for configuring the translations for your controller; and `j` adds some debugging output from the Jack driver. You can also just use `-d` to enable all debugging output. (Most of these options are also available as directives in the midizaprc file; please check the distributed example.midizaprc for details.)
It's also possible to use alternative configuration files, by specifying the midizaprc file to be used with the `-r` option. Also, try `midizap -h` which prints a short help message with the available options and a brief description.
Most of the other translations in the distributed midizaprc file assume a Mackie-like device with standard playback controls and a jog wheel. Any standard DAW controller which can be switched into Mackie mode should work with these. Otherwise, you'll have to edit the configuration file to make them work.
Have a look at the distributed midizaprc file for more examples. Most of the other translations in the file assume a Mackie-like device with standard playback controls and a jog wheel. Any standard DAW controller which can be switched into Mackie mode should work with these. Otherwise, you'll have to edit the configuration file to make them work.
More information about the available configurations and on how to actually create your own configurations can be found in the example.midizaprc file. This also contains a brief explanation of the syntax used to denote the MIDI messages to be translated. You may also want to look at the comments at the top of readconfig.c for further technical details.
@ -102,7 +102,7 @@ You enable MIDI output by running the program as `midizap -o`. This will equip t
The example.midizaprc file comes with a sample configuration in the special `[MIDI]` default section for illustration purposes. This section is only active if the program is run with the `-o` option. It allows MIDI output to be sent to any connected applications, no matter which window currently has the keyboard focus. This is probably the most common way to use this feature, but of course it is also possible to have application-specific MIDI translations, in the same way as with X11 key bindings. In fact, you can freely mix mouse actions, key presses and MIDI messages in all translations.
You can try it and test that it works by running `midizap -o`, firing up a MIDI synthesizer such as [FluidSynth][] or its graphical front-end [Qsynth][], and employing QjackCtl to connect its input it to midizap's output port. In the sample configuration, the notes `C4` thru `F4` in the small octave have been set up so that they play some MIDI notes, and the modulation wheel (`CC1`) can be used as a MIDI volume controller (`CC7`). The relevant excerpt from the configuration entry looks as follows:
You can try it and test that it works by running `midizap -o`, firing up a MIDI synthesizer such as [FluidSynth][] or its graphical front-end [Qsynth][], and employing QjackCtl to connect its input it to midizap's output port. In the sample configuration, the notes `C4` thru `F4` in the small octave have been set up so that you can operate a little drumkit, and a binding for the volume controller (`CC7`) has been added as well. The relevant portion from the configuration entry looks as follows:
[FluidSynth]: http://www.fluidsynth.org/
[Qsynth]: https://qsynth.sourceforge.io/
@ -126,7 +126,7 @@ Besides MIDI notes and control change (`CC`) messages, the midizap program also
## Octave Numbering and Other Options
A note on the MIDI octave numbers in MIDI note designations is in order here. There are various different standards for numbering octaves, and different programs use different standards, which can be rather confusing. E.g., there's the ASA (Acoustical Society of America) standard where middle C is C4, also known as "scientific" or "American standard" pitch notation. At least two other standards exist specifically for MIDI octave numbering, one in which middle C is C3 (so the lowest MIDI octave starts at C-2), and zero-based octave numbers, which start at C0 and have middle C at C5. There's not really a single "best" standard here, but the latter tends to appeal to mathematically inclined and computer-savvy people, and is also what is used by default in the midizaprc file.
A note on the octave numbers in MIDI note designations is in order here. There are various different standards for numbering octaves, and different programs use different standards, which can be rather confusing. E.g., there's the ASA (Acoustical Society of America) standard where middle C is C4, also known as "scientific" or "American standard" pitch notation. At least two other standards exist specifically for MIDI octave numbering, one in which middle C is C3 (so the lowest MIDI octave starts at C-2), and zero-based octave numbers, which start at C0 and have middle C at C5. There's not really a single "best" standard here, but the latter tends to appeal to mathematically inclined and computer-savvy people, and is also what is used by default in the midizaprc file.
However, you can easily change this with a special `MIDI_OCTAVE` directive in the configuration file, please check example.midizaprc for details. For instance:
@ -152,7 +152,7 @@ Secondly, we've already seen the `-o` option which is used to equip the Jack cli
JACK_PORTS 1
~~~
You may want to place this directive directly into a configuration file, if the configuration is primarily used for doing MIDI translations, so you want to have the MIDI output enabled by default. Typically, such configurations will include just a default `[MIDI]` section and little else. (As explained below, it's also possible to have *two* pairs of input and output ports, in order to deal with controller feedback from the application. This is achieved by either invoking midizap with the `-o2` option, or by employing the `JACK_PORTS 2` directive in the configuration file.)
You may want to place this directive directly into a configuration file if the configuration is primarily used for doing MIDI translations, so you want to have the MIDI output enabled by default. Typically, such configurations will include just a default `[MIDI]` section and little else. (As explained below, it's also possible to have *two* pairs of input and output ports, in order to deal with controller feedback from the application. This is achieved by either invoking midizap with the `-o2` option, or by employing the `JACK_PORTS 2` directive in the configuration file.)
## Secondary MIDI Ports