Refactor to standardized naming conventions for PR#1
This commit is contained in:
parent
5e6bb15d1c
commit
0a616243cc
48
bluesleep.py
48
bluesleep.py
|
@ -156,17 +156,17 @@ def flush_old_raw_data(tick_time):
|
||||||
global sleep_data
|
global sleep_data
|
||||||
|
|
||||||
for data_type in sleep_data:
|
for data_type in sleep_data:
|
||||||
s_datum = sleep_data[data_type]
|
s_data = sleep_data[data_type]
|
||||||
periods = s_datum['periods']
|
periods = s_datum['periods']
|
||||||
|
|
||||||
cleaned_raw_data = []
|
cleaned_raw_data = []
|
||||||
|
|
||||||
for raw_datum in s_datum['raw_data']:
|
for raw_datum in s_data['raw_data']:
|
||||||
datum_age = tick_time - raw_datum['time']
|
datum_age = tick_time - raw_datum['time']
|
||||||
if datum_age < max(periods):
|
if datum_age < max(periods):
|
||||||
cleaned_raw_data.append(raw_datum)
|
cleaned_raw_data.append(raw_datum)
|
||||||
|
|
||||||
s_datum['raw_data'] = cleaned_raw_data
|
s_data['raw_data'] = cleaned_raw_data
|
||||||
|
|
||||||
|
|
||||||
def average_raw_data(tick_time):
|
def average_raw_data(tick_time):
|
||||||
|
@ -176,10 +176,10 @@ def average_raw_data(tick_time):
|
||||||
csv_out = {'time': timestamp }
|
csv_out = {'time': timestamp }
|
||||||
|
|
||||||
for data_type in sleep_data:
|
for data_type in sleep_data:
|
||||||
s_datum = sleep_data[data_type]
|
s_data = sleep_data[data_type]
|
||||||
period_averages_dict = {'time': timestamp}
|
period_averages_dict = {'time': timestamp}
|
||||||
periods = s_datum['periods']
|
periods = s_data['periods']
|
||||||
value_name = s_datum['value_name']
|
value_name = s_data['value_name']
|
||||||
|
|
||||||
flush_old_raw_data(tick_time)
|
flush_old_raw_data(tick_time)
|
||||||
|
|
||||||
|
@ -202,7 +202,7 @@ def average_raw_data(tick_time):
|
||||||
|
|
||||||
csv_out[data_type + str(period_seconds)] = zero_to_nan(period_data_average)
|
csv_out[data_type + str(period_seconds)] = zero_to_nan(period_data_average)
|
||||||
|
|
||||||
s_datum['averaged_data'].append(period_averages_dict)
|
s_data['averaged_data'].append(period_averages_dict)
|
||||||
write_csv(csv_out)
|
write_csv(csv_out)
|
||||||
|
|
||||||
|
|
||||||
|
@ -246,25 +246,25 @@ def update_graph_data():
|
||||||
global graph_data
|
global graph_data
|
||||||
|
|
||||||
for data_type in sleep_data:
|
for data_type in sleep_data:
|
||||||
s_datum = sleep_data[data_type] # Re-referenced to shorten name
|
s_data = sleep_data[data_type] # Re-referenced to shorten name
|
||||||
avg_datum = s_datum['averaged_data']
|
avg_data = s_data['averaged_data']
|
||||||
|
|
||||||
if len(avg_datum) > 1:
|
if len(avg_data) > 1:
|
||||||
|
|
||||||
g_datum = graph_data[data_type] # Re-referenced to short name
|
g_data = graph_data[data_type] # Re-referenced to short name
|
||||||
data_periods = s_datum['periods']
|
data_periods = s_data['periods']
|
||||||
|
|
||||||
starting_index = max([(len(g_dataum['time']) - 1), 0])
|
starting_index = max([(len(g_data['time']) - 1), 0])
|
||||||
ending_index = len(avg_datum) - 1
|
ending_index = len(avg_data) - 1
|
||||||
|
|
||||||
# Re-referenced to shorten name
|
# Re-referenced to shorten name
|
||||||
sleep_data_range = avg_datum[starting_index:ending_index]
|
sleep_data_range = avg_data[starting_index:ending_index]
|
||||||
|
|
||||||
for sleep_datum in sleep_data_range:
|
for sleep_datum in sleep_data_range:
|
||||||
g_datum['time'].append(sleep_datum['time'])
|
g_data['time'].append(sleep_datum['time'])
|
||||||
for period in data_periods:
|
for period in data_periods:
|
||||||
if g_datum['data'][period] != 'nan':
|
if g_data['data'][period] != 'nan':
|
||||||
g_datum['data'][period].append(sleep_datum[period])
|
g_data['data'][period].append(sleep_datum[period])
|
||||||
|
|
||||||
|
|
||||||
def graph_animation(i):
|
def graph_animation(i):
|
||||||
|
@ -284,15 +284,15 @@ def graph_animation(i):
|
||||||
break
|
break
|
||||||
|
|
||||||
for data_type in sleep_data:
|
for data_type in sleep_data:
|
||||||
s_datum = sleep_data[data_type]
|
s_data = sleep_data[data_type]
|
||||||
g_datum = graph_data[data_type]
|
g_data = graph_data[data_type]
|
||||||
if len(g_datum['time']) > 0:
|
if len(g_datum['time']) > 0:
|
||||||
plotflag = True
|
plotflag = True
|
||||||
data_periods = sleep_data[data_type]['periods']
|
data_periods = sleep_data[data_type]['periods']
|
||||||
for period in data_periods:
|
for period in data_periods:
|
||||||
axis_label = "{} {} sec".format(s_datum['value_name'], period)
|
axis_label = "{} {} sec".format(s_data['value_name'], period)
|
||||||
graph_axes.plot(g_datum['time'],
|
graph_axes.plot(g_data['time'],
|
||||||
g_datum['data'][period],
|
g_data['data'][period],
|
||||||
label=axis_label)
|
label=axis_label)
|
||||||
|
|
||||||
if plotflag:
|
if plotflag:
|
||||||
|
@ -346,4 +346,4 @@ if __name__ == "__main__":
|
||||||
# comfort_wav = 'comfort.wav'
|
# comfort_wav = 'comfort.wav'
|
||||||
# wave_obj = sa.WaveObject.from_wave_file(comfort_wav)
|
# wave_obj = sa.WaveObject.from_wave_file(comfort_wav)
|
||||||
# comfort_delay = 30
|
# comfort_delay = 30
|
||||||
# comfort_lasttime = time.time()
|
# comfort_lasttime = time.time()
|
||||||
|
|
Loading…
Reference in New Issue