2010-03-12 03:06:40 +01:00
IPC interface (interprocess communication)
==========================================
2012-02-07 21:43:58 +01:00
Michael Stapelberg <michael@i3wm.org>
2017-09-24 17:25:41 +02:00
September 2017
2010-03-12 03:06:40 +01:00
This document describes how to interface with i3 from a separate process. This
is useful for example to remote-control i3 (to write test cases for example) or
to get various information like the current workspaces to implement an external
workspace bar.
The method of choice for IPC in our case is a unix socket because it has very
little overhead on both sides and is usually available without headaches in
2011-07-24 14:39:15 +02:00
most languages. In the default configuration file, the ipc-socket gets created
2011-12-18 18:53:21 +01:00
in +/tmp/i3-%u.XXXXXX/ipc-socket.%p+ where +%u+ is your UNIX username, +%p+ is
the PID of i3 and XXXXXX is a string of random characters from the portable
filename character set (see mkdtemp(3)). You can get the socketpath from i3 by
calling +i3 --get-socketpath+.
2011-01-11 04:39:48 +01:00
2011-07-24 14:39:15 +02:00
All i3 utilities, like +i3-msg+ and +i3-input+ will read the +I3_SOCKET_PATH+
X11 property, stored on the X11 root window.
2010-03-12 03:06:40 +01:00
2012-10-03 23:59:33 +02:00
[WARNING]
.Use an existing library!
There are existing libraries for many languages. You can have a look at
<<libraries>> or search the web if your language of choice is not mentioned.
Usually, it is not necessary to implement low-level communication with i3
directly.
2010-03-12 03:06:40 +01:00
== Establishing a connection
To establish a connection, simply open the IPC socket. The following code
snippet illustrates this in Perl:
-------------------------------------------------------------
use IO::Socket::UNIX;
2011-10-20 20:46:57 +02:00
chomp(my $path = qx(i3 --get-socketpath));
my $sock = IO::Socket::UNIX->new(Peer => $path);
2010-03-12 03:06:40 +01:00
-------------------------------------------------------------
== Sending messages to i3
To send a message to i3, you have to format in the binary message format which
i3 expects. This format specifies a magic string in the beginning to ensure
2010-03-21 01:50:10 +01:00
the integrity of messages (to prevent follow-up errors). Following the magic
string comes the length of the payload of the message as 32-bit integer, and
the type of the message as 32-bit integer (the integers are not converted, so
they are in native byte order).
2010-03-12 03:06:40 +01:00
The magic string currently is "i3-ipc" and will only be changed when a change
in the IPC API is done which breaks compatibility (we hope that we don’ t need
to do that).
2017-09-17 15:25:00 +02:00
.Currently implemented message types
[options="header",cols="^10%,^20%,^20%,^50%"]
|======================================================
| Type (numeric) | Type (name) | Reply type | Purpose
| 0 | +RUN_COMMAND+ | <<_command_reply,COMMAND>> | Run the payload as an i3 command (like the commands you can bind to keys).
| 1 | +GET_WORKSPACES+ | <<_workspaces_reply,WORKSPACES>> | Get the list of current workspaces.
| 2 | +SUBSCRIBE+ | <<_subscribe_reply,SUBSCRIBE>> | Subscribe this IPC connection to the event types specified in the message payload. See <<events>>.
| 3 | +GET_OUTPUTS+ | <<_outputs_reply,OUTPUTS>> | Get the list of current outputs.
| 4 | +GET_TREE+ | <<_tree_reply,TREE>> | Get the i3 layout tree.
| 5 | +GET_MARKS+ | <<_marks_reply,MARKS>> | Gets the names of all currently set marks.
| 6 | +GET_BAR_CONFIG+ | <<_bar_config_reply,BAR_CONFIG>> | Gets the specified bar configuration or the names of all bar configurations if payload is empty.
| 7 | +GET_VERSION+ | <<_version_reply,VERSION>> | Gets the i3 version.
| 8 | +GET_BINDING_MODES+ | <<_binding_modes_reply,BINDING_MODES>> | Gets the names of all currently configured binding modes.
2017-09-24 17:25:41 +02:00
| 9 | +GET_CONFIG+ | <<_config_reply,CONFIG>> | Returns the last loaded i3 config.
2017-09-24 15:40:30 +02:00
| 10 | +SEND_TICK+ | <<_tick_reply,TICK>> | Sends a tick event with the specified payload.
2018-03-30 21:06:18 +02:00
| 11 | +SYNC+ | <<_sync_reply,SYNC>> | Sends an i3 sync event with the specified random value to the specified window.
2017-09-17 15:25:00 +02:00
|======================================================
2010-03-12 03:06:40 +01:00
So, a typical message could look like this:
--------------------------------------------------
"i3-ipc" <message length> <message type> <payload>
--------------------------------------------------
Or, as a hexdump:
------------------------------------------------------------------------------
00000000 69 33 2d 69 70 63 04 00 00 00 00 00 00 00 65 78 |i3-ipc........ex|
2012-10-03 23:54:35 +02:00
00000010 69 74 |it|
2010-03-12 03:06:40 +01:00
------------------------------------------------------------------------------
To generate and send such a message, you could use the following code in Perl:
2019-07-19 21:23:57 +02:00
-------------------------------------------------------------------------------
2010-03-12 03:06:40 +01:00
sub format_ipc_command {
my ($msg) = @_;
my $len;
# Get the real byte count (vs. amount of characters)
{ use bytes; $len = length($msg); }
return "i3-ipc" . pack("LL", $len, 0) . $msg;
}
$sock->write(format_ipc_command("exit"));
2019-07-19 21:23:57 +02:00
-------------------------------------------------------------------------------
2010-03-12 03:06:40 +01:00
== Receiving replies from i3
2010-03-21 01:50:10 +01:00
Replies from i3 usually consist of a simple string (the length of the string
2010-03-12 03:06:40 +01:00
is the message_length, so you can consider them length-prefixed) which in turn
contain the JSON serialization of a data structure. For example, the
GET_WORKSPACES message returns an array of workspaces (each workspace is a map
with certain attributes).
=== Reply format
The reply format is identical to the normal message format. There also is
the magic string, then the message length, then the message type and the
payload.
The following reply types are implemented:
2010-03-13 19:09:49 +01:00
COMMAND (0)::
2017-09-17 15:25:00 +02:00
Confirmation/Error code for the RUN_COMMAND message.
2011-12-10 12:16:32 +01:00
WORKSPACES (1)::
2010-03-12 03:06:40 +01:00
Reply to the GET_WORKSPACES message.
2010-03-13 19:09:49 +01:00
SUBSCRIBE (2)::
Confirmation/Error code for the SUBSCRIBE message.
2011-12-10 12:16:32 +01:00
OUTPUTS (3)::
2010-03-19 22:24:52 +01:00
Reply to the GET_OUTPUTS message.
2011-12-10 12:16:32 +01:00
TREE (4)::
2011-07-24 15:02:39 +02:00
Reply to the GET_TREE message.
2011-12-10 12:16:32 +01:00
MARKS (5)::
2011-08-06 20:23:18 +02:00
Reply to the GET_MARKS message.
2011-12-10 12:16:32 +01:00
BAR_CONFIG (6)::
2011-10-20 21:16:07 +02:00
Reply to the GET_BAR_CONFIG message.
2012-08-05 14:29:19 +02:00
VERSION (7)::
Reply to the GET_VERSION message.
2016-06-15 22:25:22 +02:00
BINDING_MODES (8)::
Reply to the GET_BINDING_MODES message.
2017-09-24 17:25:41 +02:00
GET_CONFIG (9)::
Reply to the GET_CONFIG message.
2017-09-24 15:40:30 +02:00
TICK (10)::
Reply to the SEND_TICK message.
2010-03-13 19:09:49 +01:00
2017-09-17 15:25:00 +02:00
[[_command_reply]]
2010-03-13 19:09:49 +01:00
=== COMMAND reply
2014-02-28 19:45:22 +01:00
The reply consists of a list of serialized maps for each command that was
parsed. Each has the property +success (bool)+ and may also include a
human-readable error message in the property +error (string)+.
2010-03-13 19:09:49 +01:00
2019-08-02 23:56:48 +02:00
NOTE: When sending the `restart` command, you will get a singular reply once the
restart completed. All IPC connection states (e.g. subscriptions) will reset and
all but one socket will be closed. Libraries must be able to cope with this by
aligning their internal states. It is also recommended that libraries close
the last remaining socket(one which replied to `restart` command) to achieve
the full reset.
NOTE: It is easiest to always send the `restart` command alone: due to i3’ s
state reset, the reply messages of preceding commands are lost, and following
commands will not be executed.
NOTE: When processing the `exit` command, i3 will immediately exit without
sending a reply. Expect the socket to be shut down.
2010-03-13 19:09:49 +01:00
*Example:*
-------------------
2014-02-28 19:45:22 +01:00
[{ "success": true }]
2010-03-13 19:09:49 +01:00
-------------------
2010-03-12 03:06:40 +01:00
2017-09-17 15:25:00 +02:00
[[_workspaces_reply]]
2011-12-10 12:16:32 +01:00
=== WORKSPACES reply
2010-03-12 03:06:40 +01:00
The reply consists of a serialized list of workspaces. Each workspace has the
following properties:
2020-01-07 02:32:18 +01:00
id (integer)::
The internal ID (actually a C pointer value) of this container. Do not
make any assumptions about it. You can use it to (re-)identify and
address containers when talking to i3.
2010-03-12 03:06:40 +01:00
num (integer)::
2010-03-13 19:09:49 +01:00
The logical number of the workspace. Corresponds to the command
2014-09-22 07:09:25 +02:00
to switch to this workspace. For named workspaces, this will be -1.
2010-03-12 03:06:40 +01:00
name (string)::
The name of this workspace (by default num+1), as changed by the
user. Encoded in UTF-8.
visible (boolean)::
Whether this workspace is currently visible on an output (multiple
workspaces can be visible at the same time).
focused (boolean)::
Whether this workspace currently has the focus (only one workspace
can have the focus at the same time).
2010-03-19 22:01:21 +01:00
urgent (boolean)::
Whether a window on this workspace has the "urgent" flag set.
2010-03-12 03:06:40 +01:00
rect (map)::
The rectangle of this workspace (equals the rect of the output it
is on), consists of x, y, width, height.
output (string)::
The video output this workspace is on (LVDS1, VGA1, …).
*Example:*
-------------------
[
{
"num": 0,
"name": "1",
"visible": true,
"focused": true,
2010-03-19 22:01:21 +01:00
"urgent": false,
2010-03-12 03:06:40 +01:00
"rect": {
"x": 0,
"y": 0,
"width": 1280,
"height": 800
},
"output": "LVDS1"
},
{
"num": 1,
"name": "2",
"visible": false,
"focused": false,
2010-03-19 22:01:21 +01:00
"urgent": false,
2010-03-12 03:06:40 +01:00
"rect": {
"x": 0,
"y": 0,
"width": 1280,
"height": 800
},
"output": "LVDS1"
}
]
-------------------
2010-03-13 19:09:49 +01:00
2017-09-17 15:25:00 +02:00
[[_subscribe_reply]]
2010-03-13 19:09:49 +01:00
=== SUBSCRIBE reply
The reply consists of a single serialized map. The only property is
+success (bool)+, indicating whether the subscription was successful (the
default) or whether a JSON parse error occurred.
*Example:*
-------------------
{ "success": true }
-------------------
2017-09-17 15:25:00 +02:00
[[_outputs_reply]]
2012-08-05 14:42:12 +02:00
=== OUTPUTS reply
2010-03-19 22:24:52 +01:00
The reply consists of a serialized list of outputs. Each output has the
following properties:
name (string)::
The name of this output (as seen in +xrandr(1)+). Encoded in UTF-8.
active (boolean)::
Whether this output is currently active (has a valid mode).
2017-03-06 07:20:47 +01:00
primary (boolean)::
Whether this output is currently the primary output.
2014-02-23 10:36:39 +01:00
current_workspace (string)::
The name of the current workspace that is visible on this output. +null+ if
the output is not active.
2010-03-19 22:24:52 +01:00
rect (map)::
The rectangle of this output (equals the rect of the output it
is on), consists of x, y, width, height.
*Example:*
-------------------
[
{
"name": "LVDS1",
"active": true,
2014-02-23 10:36:39 +01:00
"current_workspace": "4",
2010-03-19 22:24:52 +01:00
"rect": {
"x": 0,
"y": 0,
"width": 1280,
"height": 800
}
},
{
"name": "VGA1",
"active": true,
2014-02-23 10:36:39 +01:00
"current_workspace": "1",
2010-03-19 22:24:52 +01:00
"rect": {
"x": 1280,
"y": 0,
"width": 1280,
"height": 1024
2017-05-04 00:36:44 +02:00
}
2010-03-19 22:24:52 +01:00
}
]
-------------------
2017-09-17 15:25:00 +02:00
[[_tree_reply]]
2011-12-10 12:16:32 +01:00
=== TREE reply
2011-07-24 15:02:39 +02:00
The reply consists of a serialized tree. Each node in the tree (representing
one container) has at least the properties listed below. While the nodes might
have more properties, please do not use any properties which are not documented
here. They are not yet finalized and will probably change!
id (integer)::
The internal ID (actually a C pointer value) of this container. Do not
make any assumptions about it. You can use it to (re-)identify and
address containers when talking to i3.
name (string)::
The internal name of this container. For all containers which are part
of the tree structure down to the workspace contents, this is set to a
nice human-readable name of the container.
2013-12-14 14:50:44 +01:00
For containers that have an X11 window, the content is the title
(_NET_WM_NAME property) of that window.
2011-07-24 15:02:39 +02:00
For all other containers, the content is not defined (yet).
2013-12-14 14:50:44 +01:00
type (string)::
Type of this container. Can be one of "root", "output", "con",
"floating_con", "workspace" or "dockarea".
2011-07-24 15:02:39 +02:00
border (string)::
2016-05-28 16:44:20 +02:00
Can be either "normal", "none" or "pixel", depending on the
2011-07-24 15:02:39 +02:00
container’ s border style.
2012-09-24 01:14:00 +02:00
current_border_width (integer)::
Number of pixels of the border width.
2011-07-24 15:02:39 +02:00
layout (string)::
Introduce splith/splitv layouts, remove orientation
With this commit, the "default" layout is replaced by the splith and
splitv layouts. splith is equivalent to default with orientation
horizontal and splitv is equivalent to default with orientation
vertical.
The "split h" and "split v" commands continue to work as before, they
split the current container and you will end up in a split container
with layout splith (after "split h") or splitv (after "split v").
To change a splith container into a splitv container, use either "layout
splitv" or "layout toggle split". The latter command is used in the
default config as mod+l (previously "layout default"). In case you have
"layout default" in your config file, it is recommended to just replace
it by "layout toggle split", which will work as "layout default" did
before when pressing it once, but toggle between horizontal/vertical
when pressing it repeatedly.
The rationale behind this commit is that it’s cleaner to have all
parameters that influence how windows are rendered in the layout itself
rather than having a special parameter in combination with only one
layout. This enables us to change existing split containers in all cases
without breaking existing features (see ticket #464). Also, users should
feel more confident about whether they are actually splitting or just
changing an existing split container now.
As a nice side-effect, this commit brings back the "layout toggle"
feature we once had in i3 version 3 (see the userguide).
AFAIK, it is safe to use in-place restart to upgrade into versions
after this commit (switching to an older version will break your layout,
though).
Fixes #464
2012-08-04 03:04:00 +02:00
Can be either "splith", "splitv", "stacked", "tabbed", "dockarea" or
"output".
2011-07-24 15:02:39 +02:00
Other values might be possible in the future, should we add new
layouts.
orientation (string)::
Can be either "none" (for non-split containers), "horizontal" or
"vertical".
Introduce splith/splitv layouts, remove orientation
With this commit, the "default" layout is replaced by the splith and
splitv layouts. splith is equivalent to default with orientation
horizontal and splitv is equivalent to default with orientation
vertical.
The "split h" and "split v" commands continue to work as before, they
split the current container and you will end up in a split container
with layout splith (after "split h") or splitv (after "split v").
To change a splith container into a splitv container, use either "layout
splitv" or "layout toggle split". The latter command is used in the
default config as mod+l (previously "layout default"). In case you have
"layout default" in your config file, it is recommended to just replace
it by "layout toggle split", which will work as "layout default" did
before when pressing it once, but toggle between horizontal/vertical
when pressing it repeatedly.
The rationale behind this commit is that it’s cleaner to have all
parameters that influence how windows are rendered in the layout itself
rather than having a special parameter in combination with only one
layout. This enables us to change existing split containers in all cases
without breaking existing features (see ticket #464). Also, users should
feel more confident about whether they are actually splitting or just
changing an existing split container now.
As a nice side-effect, this commit brings back the "layout toggle"
feature we once had in i3 version 3 (see the userguide).
AFAIK, it is safe to use in-place restart to upgrade into versions
after this commit (switching to an older version will break your layout,
though).
Fixes #464
2012-08-04 03:04:00 +02:00
THIS FIELD IS OBSOLETE. It is still present, but your code should not
use it. Instead, rely on the layout field.
2011-07-24 15:02:39 +02:00
percent (float)::
The percentage which this container takes in its parent. A value of
+null+ means that the percent property does not make sense for this
container, for example for the root container.
rect (map)::
The absolute display coordinates for this container. Display
coordinates means that when you have two 1600x1200 monitors on a single
X11 Display (the standard way), the coordinates of the first window on
the second monitor are +{ "x": 1600, "y": 0, "width": 1600, "height":
1200 }+.
window_rect (map)::
The coordinates of the *actual client window* inside its container.
These coordinates are relative to the container and do not include the
window decoration (which is actually rendered on the parent container).
So, when using the +default+ layout, you will have a 2 pixel border on
each side, making the window_rect +{ "x": 2, "y": 0, "width": 632,
"height": 366 }+ (for example).
2014-11-16 22:05:51 +01:00
deco_rect (map)::
The coordinates of the *window decoration* inside its container. These
coordinates are relative to the container and do not include the actual
client window.
2011-07-24 15:02:39 +02:00
geometry (map)::
The original geometry the window specified when i3 mapped it. Used when
switching a window to floating mode, for example.
2012-07-23 11:01:52 +02:00
window (integer)::
The X11 window ID of the *actual client window* inside this container.
This field is set to null for split containers or otherwise empty
containers. This ID corresponds to what xwininfo(1) and other
X11-related tools display (usually in hex).
2018-04-18 02:46:59 +02:00
window_properties (map)::
X11 window properties title, instance, class, window_role and transient_for.
2011-07-24 15:02:39 +02:00
urgent (bool)::
2017-09-18 16:36:34 +02:00
Whether this container (window, split container, floating container or
workspace) has the urgency hint set, directly or indirectly. All parent
containers up until the workspace container will be marked urgent if they
have at least one urgent child.
2019-11-28 04:34:09 +01:00
marks (array of string)::
List of marks assigned to container
2011-07-24 15:02:39 +02:00
focused (bool)::
Whether this container is currently focused.
2017-09-16 17:28:44 +02:00
focus (array of integer)::
List of child node IDs (see +nodes+, +floating_nodes+ and +id+) in focus
order. Traversing the tree by following the first entry in this array
will result in eventually reaching the one node with +focused+ set to
true.
2019-09-01 19:46:45 +02:00
fullscreen_mode (integer)::
Whether this container is in fullscreen state or not.
Possible values are
+0+ (no fullscreen),
+1+ (fullscreened on output) or
+2+ (fullscreened globally).
Note that all workspaces are considered fullscreened on their respective output.
2017-09-16 17:28:44 +02:00
nodes (array of node)::
The tiling (i.e. non-floating) child containers of this node.
floating_nodes (array of node)::
The floating child containers of this node. Only non-empty on nodes with
type +workspace+.
2011-07-24 15:02:39 +02:00
Please note that in the following example, I have left out some keys/values
which are not relevant for the type of the node. Otherwise, the example would
be by far too long (it already is quite long, despite showing only 1 window and
one dock window).
It is useful to have an overview of the structure before taking a look at the
JSON dump:
* root
** LVDS1
*** topdock
*** content
**** workspace 1
***** window 1
*** bottomdock
**** dock window 1
** VGA1
*Example:*
-----------------------
{
"id": 6875648,
"name": "root",
"rect": {
"x": 0,
"y": 0,
"width": 1280,
"height": 800
},
"nodes": [
{
"id": 6878320,
"name": "LVDS1",
"layout": "output",
"rect": {
"x": 0,
"y": 0,
"width": 1280,
"height": 800
},
"nodes": [
{
"id": 6878784,
"name": "topdock",
"layout": "dockarea",
"orientation": "vertical",
"rect": {
"x": 0,
"y": 0,
"width": 1280,
"height": 0
2017-05-04 00:36:44 +02:00
}
2011-07-24 15:02:39 +02:00
},
{
"id": 6879344,
"name": "content",
"rect": {
"x": 0,
"y": 0,
"width": 1280,
"height": 782
},
"nodes": [
{
"id": 6880464,
"name": "1",
"orientation": "horizontal",
"rect": {
"x": 0,
"y": 0,
"width": 1280,
"height": 782
},
2018-04-18 02:46:59 +02:00
"window_properties": {
"class": "Evince",
"instance": "evince",
"title": "Properties",
"transient_for": 52428808
},
2011-07-24 15:02:39 +02:00
"floating_nodes": [],
"nodes": [
{
"id": 6929968,
"name": "#aa0000",
"border": "normal",
"percent": 1,
"rect": {
"x": 0,
"y": 18,
"width": 1280,
"height": 782
}
}
]
}
]
},
{
"id": 6880208,
"name": "bottomdock",
"layout": "dockarea",
"orientation": "vertical",
"rect": {
"x": 0,
"y": 782,
"width": 1280,
"height": 18
},
"nodes": [
{
"id": 6931312,
"name": "#00aa00",
"percent": 1,
"rect": {
"x": 0,
"y": 782,
"width": 1280,
"height": 18
}
}
]
}
]
}
]
}
2019-07-19 21:23:57 +02:00
-----------------------
2011-08-06 20:23:18 +02:00
2017-09-17 15:25:00 +02:00
[[_marks_reply]]
2011-12-10 12:16:32 +01:00
=== MARKS reply
2011-08-06 20:23:18 +02:00
2011-08-09 08:22:58 +02:00
The reply consists of a single array of strings for each container that has a
2013-07-16 00:33:14 +02:00
mark. A mark can only be set on one container, so the array is unique.
The order of that array is undefined.
2011-08-06 20:23:18 +02:00
If no window has a mark the response will be the empty array [].
2011-07-24 15:02:39 +02:00
2017-09-17 15:25:00 +02:00
[[_bar_config_reply]]
2011-12-10 12:16:32 +01:00
=== BAR_CONFIG reply
2011-10-20 21:16:07 +02:00
This can be used by third-party workspace bars (especially i3bar, but others
are free to implement compatible alternatives) to get the +bar+ block
configuration from i3.
Depending on the input, the reply is either:
empty input::
An array of configured bar IDs
Bar ID::
A JSON map containing the configuration for the specified bar.
Each bar configuration has the following properties:
id (string)::
The ID for this bar. Included in case you request multiple
configurations and want to differentiate the different replies.
mode (string)::
Either +dock+ (the bar sets the dock window type) or +hide+ (the bar
does not show unless a specific key is pressed).
position (string)::
Either +bottom+ or +top+ at the moment.
status_command (string)::
Command which will be run to generate a statusline. Each line on stdout
of this command will be displayed in the bar. At the moment, no
formatting is supported.
font (string)::
The font to use for text on the bar.
workspace_buttons (boolean)::
Display workspace buttons or not? Defaults to true.
2013-08-09 05:30:14 +02:00
binding_mode_indicator (boolean)::
Display the mode indicator or not? Defaults to true.
2011-10-20 21:16:07 +02:00
verbose (boolean)::
Should the bar enable verbose output for debugging? Defaults to false.
colors (map)::
Contains key/value pairs of colors. Each value is a color code in hex,
2011-10-23 18:48:44 +02:00
formatted #rrggbb (like in HTML).
2011-10-20 21:16:07 +02:00
The following colors can be configured at the moment:
background::
Background color of the bar.
statusline::
Text color to be used for the statusline.
2013-01-27 21:27:21 +01:00
separator::
Text color to be used for the separator.
2015-10-26 21:55:01 +01:00
focused_background::
Background color of the bar on the currently focused monitor output.
focused_statusline::
Text color to be used for the statusline on the currently focused
monitor output.
focused_separator::
Text color to be used for the separator on the currently focused
monitor output.
2015-05-31 16:07:40 +02:00
focused_workspace_text/focused_workspace_bg/focused_workspace_border::
Text/background/border color for a workspace button when the workspace
2011-10-20 21:16:07 +02:00
has focus.
2015-05-31 16:07:40 +02:00
active_workspace_text/active_workspace_bg/active_workspace_border::
Text/background/border color for a workspace button when the workspace
2011-10-20 21:16:07 +02:00
is active (visible) on some output, but the focus is on another one.
You can only tell this apart from the focused workspace when you are
using multiple monitors.
2015-05-31 16:07:40 +02:00
inactive_workspace_text/inactive_workspace_bg/inactive_workspace_border::
Text/background/border color for a workspace button when the workspace
2011-10-20 21:16:07 +02:00
does not have focus and is not active (visible) on any output. This
will be the case for most workspaces.
2015-05-31 16:07:40 +02:00
urgent_workspace_text/urgent_workspace_bg/urgent_workspace_border::
Text/background/border color for workspaces which contain at least one
2011-10-20 21:16:07 +02:00
window with the urgency hint set.
2015-05-31 16:07:40 +02:00
binding_mode_text/binding_mode_bg/binding_mode_border::
Text/background/border color for the binding mode indicator.
2011-10-20 21:16:07 +02:00
*Example of configured bars:*
--------------
["bar-bxuqzf"]
--------------
*Example of bar configuration:*
--------------
{
"id": "bar-bxuqzf",
"mode": "dock",
"position": "bottom",
"status_command": "i3status",
"font": "-misc-fixed-medium-r-normal--13-120-75-75-C-70-iso10646-1",
"workspace_buttons": true,
2013-08-09 05:30:14 +02:00
"binding_mode_indicator": true,
2011-10-20 21:16:07 +02:00
"verbose": false,
"colors": {
2011-10-23 18:48:44 +02:00
"background": "#c0c0c0",
"statusline": "#00ff00",
"focused_workspace_text": "#ffffff",
"focused_workspace_bg": "#000000"
2011-10-20 21:16:07 +02:00
}
}
--------------
2011-07-24 15:02:39 +02:00
2017-09-17 15:25:00 +02:00
[[_version_reply]]
2012-08-05 14:42:12 +02:00
=== VERSION reply
2012-08-05 14:29:19 +02:00
The reply consists of a single JSON dictionary with the following keys:
major (integer)::
The major version of i3, such as +4+.
minor (integer)::
The minor version of i3, such as +2+. Changes in the IPC interface (new
features) will only occur with new minor (or major) releases. However,
bugfixes might be introduced in patch releases, too.
patch (integer)::
The patch version of i3, such as +1+ (when the complete version is
2012-08-05 14:39:45 +02:00
+4.2.1+). For versions such as +4.2+, patch will be set to +0+.
2012-08-05 14:29:19 +02:00
human_readable (string)::
A human-readable version of i3 containing the precise git version,
build date and branch name. When you need to display the i3 version to
your users, use the human-readable version whenever possible (since
this is what +i3 --version+ displays, too).
2015-07-09 16:25:50 +02:00
loaded_config_file_name (string)::
The current config path.
2012-08-05 14:29:19 +02:00
*Example:*
-------------------
{
"human_readable" : "4.2-169-gf80b877 (2012-08-05, branch \"next\")",
2015-07-09 16:25:50 +02:00
"loaded_config_file_name" : "/home/hwangcc23/.i3/config",
2012-08-05 14:29:19 +02:00
"minor" : 2,
"patch" : 0,
"major" : 4
}
-------------------
2017-09-17 15:25:00 +02:00
[[_binding_modes_reply]]
2016-06-15 22:25:22 +02:00
=== BINDING_MODES reply
The reply consists of an array of all currently configured binding modes.
*Example:*
---------------------
["default", "resize"]
---------------------
2017-09-24 17:25:41 +02:00
[[_config_reply]]
=== CONFIG reply
The config reply is a map which currently only contains the "config" member,
which is a string containing the config file as loaded by i3 most recently.
*Example:*
-------------------
{ "config": "font pango:monospace 8\nbindsym Mod4+q exit\n" }
-------------------
2017-09-24 15:40:30 +02:00
[[_tick_reply]]
=== TICK reply
The reply is a map containing the "success" member. After the reply was
received, the tick event has been written to all IPC connections which subscribe
to tick events. UNIX sockets are usually buffered, but you can be certain that
once you receive the tick event you just triggered, you must have received all
events generated prior to the +SEND_TICK+ message (happened-before relation).
*Example:*
-------------------
{ "success": true }
-------------------
2017-09-24 17:25:41 +02:00
2018-03-30 21:06:18 +02:00
[[_sync_reply]]
=== SYNC reply
The reply is a map containing the "success" member. After the reply was
received, the https://i3wm.org/docs/testsuite.html#i3_sync[i3 sync message] was
responded to.
*Example:*
-------------------
{ "success": true }
-------------------
2010-03-13 19:09:49 +01:00
== Events
[[events]]
To get informed when certain things happen in i3, clients can subscribe to
events. Events consist of a name (like "workspace") and an event reply type
2019-02-01 08:00:00 +01:00
(like I3_IPC_EVENT_WORKSPACE). Events sent by i3 follow a format similar to
replies but with the highest bit of the message type set to 1 to indicate an
event reply instead of a normal reply. Note that event types and reply types
do not follow the same enumeration scheme (e.g. event type 0 corresponds to the
workspace event however reply type 0 corresponds to the COMMAND reply).
2010-03-13 19:09:49 +01:00
Caveat: As soon as you subscribe to an event, it is not guaranteed any longer
that the requests to i3 are processed in order. This means, the following
situation can happen: You send a GET_WORKSPACES request but you receive a
"workspace" event before receiving the reply to GET_WORKSPACES. If your
program does not want to cope which such kinds of race conditions (an
2010-03-21 01:50:10 +01:00
event based library may not have a problem here), I suggest you create a
separate connection to receive events.
2010-03-13 19:09:49 +01:00
2018-04-23 11:20:05 +02:00
If an event message needs to be sent and the socket is not writeable (write
returns EAGAIN, happens when the socket doesn't have enough buffer space for
writing new data) then i3 uses a queue system to store outgoing messages for
each client. This is combined with a timer: if the message queue for a client is
not empty and no data where successfully written in the past 10 seconds, the
connection is killed. Practically, this means that your client should try to
always read events from the socket to avoid having its connection closed.
2010-03-13 19:09:49 +01:00
=== Subscribing to events
By sending a message of type SUBSCRIBE with a JSON-encoded array as payload
you can register to an event.
*Example:*
---------------------------------
type: SUBSCRIBE
2014-12-13 22:33:42 +01:00
payload: [ "workspace", "output" ]
2010-03-13 19:09:49 +01:00
---------------------------------
2011-01-29 18:06:56 +01:00
2010-03-13 19:09:49 +01:00
=== Available events
2011-01-29 18:06:56 +01:00
The numbers in parenthesis is the event type (keep in mind that you need to
strip the highest bit first).
workspace (0)::
2010-03-13 19:09:49 +01:00
Sent when the user switches to a different workspace, when a new
workspace is initialized or when a workspace is removed (because the
last client vanished).
2011-01-29 18:06:56 +01:00
output (1)::
2010-03-19 22:40:43 +01:00
Sent when RandR issues a change notification (of either screens,
outputs, CRTCs or output properties).
2012-09-22 00:21:39 +02:00
mode (2)::
Sent whenever i3 changes its binding mode.
2013-01-11 19:58:32 +01:00
window (3)::
Sent when a client's window is successfully reparented (that is when i3
2014-02-22 11:52:01 +01:00
has finished fitting it into a container), when a window received input
2014-04-29 00:38:06 +02:00
focus or when certain properties of the window have changed.
introduced i3 command for changing the hidden state and the mode of i3bar
The hidden_state and mode of each i3bar instance can now be controlled from within i3.
Therefore, two new i3 command were introduced:
_
bar hidden_state show|hide|toggle [<bar_id>]
show: always show the bar
hide: normal hide mode
toggle: toggle between show and hide (individually for each bar)
_
bar mode dock|hide|invisible|toggle [<bar_id>]
hide,dock: like before
invisible: always keep the bar hidden
toggle: toggle between dock and hide (individually for each bar)
This patch introduces a hidden_state ("hidden_state hide|show") in the
barconfig, which indicates the current hidden_state of each i3bar
instance. It only affects the bar when in hide mode. Additionally, a new
invisible mode was introduced. In order to change the hidden_state or
mode of the bar from i3, a barconfig-update event was introduced, for
which a bar can subscribe and the bar then gets notified about the
currently set hidden_state and mode in its barconfig.
For convenience, an id field ("id <bar_id>") was added to the barconfig, where one can
set the desired id for the corresponding bar. If the id is not specified, i3 will
deterministically choose an id; otherwise, with the previous random approach for finding
a new id, which is actually not shared with i3bar, as it would determine its id on
startup, the event-subscription would be destroyed on reload. Still, this issue remains
when manually changing the bar_id in the config and then reloading.
fixes #833, #651
2013-05-25 14:30:00 +02:00
barconfig_update (4)::
Sent when the hidden_state or mode field in the barconfig of any bar
2014-04-27 07:33:58 +02:00
instance was updated and when the config is reloaded.
2014-10-03 01:04:53 +02:00
binding (5)::
Sent when a configured command binding is triggered with the keyboard or
mouse
2017-01-22 23:08:32 +01:00
shutdown (6)::
Sent when the ipc shuts down because of a restart or exit by user command
2017-09-24 15:40:30 +02:00
tick (7)::
Sent when the ipc client subscribes to the tick event (with +"first":
true+) or when any ipc client sends a SEND_TICK message (with +"first":
false+).
2010-03-13 19:09:49 +01:00
2011-01-29 18:06:56 +01:00
*Example:*
--------------------------------------------------------------------
# the appropriate 4 bytes read from the socket are stored in $input
# unpack a 32-bit unsigned integer
my $message_type = unpack("L", $input);
# check if the highest bit is 1
my $is_event = (($message_type >> 31) == 1);
# use the other bits
my $event_type = ($message_type & 0x7F);
if ($is_event) {
say "Received event of type $event_type";
}
--------------------------------------------------------------------
2010-03-13 19:09:49 +01:00
=== workspace event
This event consists of a single serialized map containing a property
+change (string)+ which indicates the type of the change ("focus", "init",
2017-07-30 06:47:40 +02:00
"empty", "urgent", "reload", "rename", "restored", "move"). A
+current (object)+ property will be present with the affected workspace
2019-08-02 23:56:48 +02:00
whenever the type of event affects a workspace (otherwise, it will be +null+).
2014-12-20 05:43:47 +01:00
When the change is "focus", an +old (object)+ property will be present with the
previous workspace. When the first switch occurs (when i3 focuses the
workspace visible at the beginning) there is no previous workspace, and the
+old+ property will be set to +null+. Also note that if the previous is empty
it will get destroyed when switching, but will still be present in the "old"
property.
2010-03-13 19:09:49 +01:00
*Example:*
---------------------
2012-11-03 12:17:29 +01:00
{
"change": "focus",
"current": {
"id": 28489712,
2013-12-14 14:50:44 +01:00
"type": "workspace",
2012-11-03 12:17:29 +01:00
...
}
"old": {
"id": 28489715,
2013-12-14 14:50:44 +01:00
"type": "workspace",
2012-11-03 12:17:29 +01:00
...
}
}
2010-03-13 19:09:49 +01:00
---------------------
2010-03-19 22:40:43 +01:00
=== output event
This event consists of a single serialized map containing a property
+change (string)+ which indicates the type of the change (currently only
"unspecified").
*Example:*
---------------------------
{ "change": "unspecified" }
---------------------------
2012-09-22 00:21:39 +02:00
=== mode event
This event consists of a single serialized map containing a property
+change (string)+ which holds the name of current mode in use. The name
is the same as specified in config when creating a mode. The default
2015-10-12 23:43:47 +02:00
mode is simply named default. It contains a second property, +pango_markup+, which
defines whether pango markup shall be used for displaying this mode.
2012-09-22 00:21:39 +02:00
*Example:*
---------------------------
2015-10-12 23:43:47 +02:00
{
"change": "default",
"pango_markup": true
}
2012-09-22 00:21:39 +02:00
---------------------------
2013-01-11 19:58:32 +01:00
=== window event
This event consists of a single serialized map containing a property
2014-04-29 00:38:06 +02:00
+change (string)+ which indicates the type of the change
2016-10-18 08:32:41 +02:00
* +new+ – the window has become managed by i3
* +close+ – the window has closed
* +focus+ – the window has received input focus
* +title+ – the window's title has changed
* +fullscreen_mode+ – the window has entered or exited fullscreen mode
* +move+ – the window has changed its position in the tree
* +floating+ – the window has transitioned to or from floating
* +urgent+ – the window has become urgent or lost its urgent status
* +mark+ – a mark has been added to or removed from the window
2013-01-11 19:58:32 +01:00
Additionally a +container (object)+ field will be present, which consists
2014-02-22 11:52:01 +01:00
of the window's parent container. Be aware that for the "new" event, the
container will hold the initial name of the newly reparented window (e.g.
if you run urxvt with a shell that changes the title, you will still at
this point get the window title as "urxvt").
2013-01-11 19:58:32 +01:00
*Example:*
---------------------------
{
"change": "new",
"container": {
"id": 35569536,
2013-12-14 14:50:44 +01:00
"type": "con",
2013-01-11 19:58:32 +01:00
...
}
}
---------------------------
introduced i3 command for changing the hidden state and the mode of i3bar
The hidden_state and mode of each i3bar instance can now be controlled from within i3.
Therefore, two new i3 command were introduced:
_
bar hidden_state show|hide|toggle [<bar_id>]
show: always show the bar
hide: normal hide mode
toggle: toggle between show and hide (individually for each bar)
_
bar mode dock|hide|invisible|toggle [<bar_id>]
hide,dock: like before
invisible: always keep the bar hidden
toggle: toggle between dock and hide (individually for each bar)
This patch introduces a hidden_state ("hidden_state hide|show") in the
barconfig, which indicates the current hidden_state of each i3bar
instance. It only affects the bar when in hide mode. Additionally, a new
invisible mode was introduced. In order to change the hidden_state or
mode of the bar from i3, a barconfig-update event was introduced, for
which a bar can subscribe and the bar then gets notified about the
currently set hidden_state and mode in its barconfig.
For convenience, an id field ("id <bar_id>") was added to the barconfig, where one can
set the desired id for the corresponding bar. If the id is not specified, i3 will
deterministically choose an id; otherwise, with the previous random approach for finding
a new id, which is actually not shared with i3bar, as it would determine its id on
startup, the event-subscription would be destroyed on reload. Still, this issue remains
when manually changing the bar_id in the config and then reloading.
fixes #833, #651
2013-05-25 14:30:00 +02:00
=== barconfig_update event
This event consists of a single serialized map reporting on options from the
2014-04-27 07:33:58 +02:00
barconfig of the specified bar_id that were updated in i3. This event is the
same as a +GET_BAR_CONFIG+ reply for the bar with the given id.
introduced i3 command for changing the hidden state and the mode of i3bar
The hidden_state and mode of each i3bar instance can now be controlled from within i3.
Therefore, two new i3 command were introduced:
_
bar hidden_state show|hide|toggle [<bar_id>]
show: always show the bar
hide: normal hide mode
toggle: toggle between show and hide (individually for each bar)
_
bar mode dock|hide|invisible|toggle [<bar_id>]
hide,dock: like before
invisible: always keep the bar hidden
toggle: toggle between dock and hide (individually for each bar)
This patch introduces a hidden_state ("hidden_state hide|show") in the
barconfig, which indicates the current hidden_state of each i3bar
instance. It only affects the bar when in hide mode. Additionally, a new
invisible mode was introduced. In order to change the hidden_state or
mode of the bar from i3, a barconfig-update event was introduced, for
which a bar can subscribe and the bar then gets notified about the
currently set hidden_state and mode in its barconfig.
For convenience, an id field ("id <bar_id>") was added to the barconfig, where one can
set the desired id for the corresponding bar. If the id is not specified, i3 will
deterministically choose an id; otherwise, with the previous random approach for finding
a new id, which is actually not shared with i3bar, as it would determine its id on
startup, the event-subscription would be destroyed on reload. Still, this issue remains
when manually changing the bar_id in the config and then reloading.
fixes #833, #651
2013-05-25 14:30:00 +02:00
2014-10-03 01:04:53 +02:00
=== binding event
This event consists of a single serialized map reporting on the details of a
2017-05-18 01:48:56 +02:00
binding that ran a command because of user input. The +change (string)+ field
2014-10-03 01:04:53 +02:00
indicates what sort of binding event was triggered (right now it will always be
+"run"+ but may be expanded in the future).
The +binding (object)+ field contains details about the binding that was run:
command (string)::
The i3 command that is configured to run for this binding.
Use libxkbcommon for translating keysyms, support all XKB groups.
fixes #1835
This commit improves the translation of keysyms to keycodes by loading
keymaps using libxkbcommon-x11 and using libxkbcommon for figuring out
the keymap, depending on each keybinding’s modifiers. This way, the
upper layers of complex layouts are now usable with i3’s bindsym
directive, such as de_neo’s layer 3 and higher.
Furthermore, the commit generalizes the handling of different XKB
groups. We formerly had support only for two separate groups, the
default group 1, and group 2. While Mode_switch is only one way to
switch to group 2, we called the binding option Mode_switch. With this
commit, the new names Group1, Group2 (an alias for Mode_switch), Group3
and Group4 are introduced for configuring bindings. This is only useful
for advanced keyboard layouts, such as people loading two keyboard
layouts and switching between them (us, ru seems to be a popular
combination).
When grabbing keys, one can only specify the modifier mask, but not an
XKB state mask (or value), so we still dynamically unbind and re-bind
keys whenever the XKB group changes.
The commit was manually tested using the following i3 config:
bindsym Group4+n nop heya from group 4
bindsym Group3+n nop heya from group 3
bindsym Group2+n nop heya from group 2
bindsym n nop heya
bindsym shift+N nop explicit shift binding
bindsym shift+r nop implicit shift binding
bindcode Group2+38 nop fallback overwritten in group 2 only
bindcode 38 nop fallback
…with the following layout:
setxkbmap -layout "us,ua,ru,de" -variant ",winkeys,,neo" \
-option "grp:shift_caps_toggle,grp_led:scroll" \
-model pc104 -rules evdev
By default (xkb group 1, us layout), pressing “n” will result in the
“heya” message appearing. Pressing “a” will result in the “fallback”
message appearing. “j” is not triggered.
By pressing Shift+CapsLock you switch to the next group (xkb group 2, ua
layout). Pressing “a” will result in the “fallback overwritten in group
2 only” message, pressing “n” will still result in “heya”. “j” is not
triggered.
In the next group (xkb group 3, ru layout), pressing “a” will result in
the “fallback” message again, pressing “n” will result in “heya”,
“j” is not triggered.
In the last group (xkb group 4, de_neo layout), pressing “a” will still
result in “fallback”, pressing “n” will result in “heya”, pressing “j”
will result in “heya from group 4”.
Pressing shift+n results in “explicit shift binding”, pressing shift+r
results in “implicit shift binding”. This ensures that keysym
translation falls back to looking at non-shift keys (“r” can be used
instead of ”R”) and that the order of keybindings doesn’t play a role
(“bindsym n” does not override “bindsym shift+n”, even though it’s
specified earlier in the config).
The fallback behavior ensures use-cases such as ticket #1775 are still
covered.
Only binding keys when the X server is in the corresponding XKB group
ensures use-cases such as ticket #585 are still covered.
2015-08-23 22:49:32 +02:00
event_state_mask (array of strings)::
The group and modifier keys that were configured with this binding.
2014-10-03 01:04:53 +02:00
input_code (integer)::
If the binding was configured with +bindcode+, this will be the key code
that was given for the binding. If the binding is a mouse binding, it will be
the number of the mouse button that was pressed. Otherwise it will be 0.
2014-10-05 20:50:30 +02:00
symbol (string or null)::
2014-10-03 01:04:53 +02:00
If this is a keyboard binding that was configured with +bindsym+, this
2014-10-05 20:50:30 +02:00
field will contain the given symbol. Otherwise it will be +null+.
2014-10-03 01:04:53 +02:00
input_type (string)::
This will be +"keyboard"+ or +"mouse"+ depending on whether or not this was
a keyboard or a mouse binding.
*Example:*
---------------------------
{
"change": "run",
"binding": {
"command": "nop",
Use libxkbcommon for translating keysyms, support all XKB groups.
fixes #1835
This commit improves the translation of keysyms to keycodes by loading
keymaps using libxkbcommon-x11 and using libxkbcommon for figuring out
the keymap, depending on each keybinding’s modifiers. This way, the
upper layers of complex layouts are now usable with i3’s bindsym
directive, such as de_neo’s layer 3 and higher.
Furthermore, the commit generalizes the handling of different XKB
groups. We formerly had support only for two separate groups, the
default group 1, and group 2. While Mode_switch is only one way to
switch to group 2, we called the binding option Mode_switch. With this
commit, the new names Group1, Group2 (an alias for Mode_switch), Group3
and Group4 are introduced for configuring bindings. This is only useful
for advanced keyboard layouts, such as people loading two keyboard
layouts and switching between them (us, ru seems to be a popular
combination).
When grabbing keys, one can only specify the modifier mask, but not an
XKB state mask (or value), so we still dynamically unbind and re-bind
keys whenever the XKB group changes.
The commit was manually tested using the following i3 config:
bindsym Group4+n nop heya from group 4
bindsym Group3+n nop heya from group 3
bindsym Group2+n nop heya from group 2
bindsym n nop heya
bindsym shift+N nop explicit shift binding
bindsym shift+r nop implicit shift binding
bindcode Group2+38 nop fallback overwritten in group 2 only
bindcode 38 nop fallback
…with the following layout:
setxkbmap -layout "us,ua,ru,de" -variant ",winkeys,,neo" \
-option "grp:shift_caps_toggle,grp_led:scroll" \
-model pc104 -rules evdev
By default (xkb group 1, us layout), pressing “n” will result in the
“heya” message appearing. Pressing “a” will result in the “fallback”
message appearing. “j” is not triggered.
By pressing Shift+CapsLock you switch to the next group (xkb group 2, ua
layout). Pressing “a” will result in the “fallback overwritten in group
2 only” message, pressing “n” will still result in “heya”. “j” is not
triggered.
In the next group (xkb group 3, ru layout), pressing “a” will result in
the “fallback” message again, pressing “n” will result in “heya”,
“j” is not triggered.
In the last group (xkb group 4, de_neo layout), pressing “a” will still
result in “fallback”, pressing “n” will result in “heya”, pressing “j”
will result in “heya from group 4”.
Pressing shift+n results in “explicit shift binding”, pressing shift+r
results in “implicit shift binding”. This ensures that keysym
translation falls back to looking at non-shift keys (“r” can be used
instead of ”R”) and that the order of keybindings doesn’t play a role
(“bindsym n” does not override “bindsym shift+n”, even though it’s
specified earlier in the config).
The fallback behavior ensures use-cases such as ticket #1775 are still
covered.
Only binding keys when the X server is in the corresponding XKB group
ensures use-cases such as ticket #585 are still covered.
2015-08-23 22:49:32 +02:00
"event_state_mask": [
2014-10-03 01:04:53 +02:00
"shift",
"ctrl"
],
"input_code": 0,
"symbol": "t",
"input_type": "keyboard"
}
}
---------------------------
2017-01-22 23:08:32 +01:00
=== shutdown event
This event is triggered when the connection to the ipc is about to shutdown
because of a user action such as a +restart+ or +exit+ command. The +change
(string)+ field indicates why the ipc is shutting down. It can be either
+"restart"+ or +"exit"+.
*Example:*
---------------------------
{
"change": "restart"
}
---------------------------
2017-09-24 15:40:30 +02:00
=== tick event
This event is triggered by a subscription to tick events or by a +SEND_TICK+
message.
*Example (upon subscription):*
--------------------------------------------------------------------------------
{
"first": true,
"payload": ""
}
--------------------------------------------------------------------------------
*Example (upon +SEND_TICK+ with a payload of +arbitrary string+):*
--------------------------------------------------------------------------------
{
"first": false,
"payload": "arbitrary string"
}
--------------------------------------------------------------------------------
2012-10-03 23:59:33 +02:00
== See also (existing libraries)
[[libraries]]
2010-03-13 19:09:49 +01:00
For some languages, libraries are available (so you don’ t have to implement
all this on your own). This list names some (if you wrote one, please let me
know):
2010-03-16 00:13:40 +01:00
C::
2014-06-14 02:06:22 +02:00
* i3 includes a headerfile +i3/ipc.h+ which provides you all constants.
* https://github.com/acrisci/i3ipc-glib
2015-12-30 15:59:53 +01:00
C++::
2019-03-11 23:45:35 +01:00
* https://github.com/Iskustvo/i3-ipcpp[i3-ipc++]
2015-12-30 15:59:53 +01:00
* https://github.com/drmgc/i3ipcpp
2013-01-01 20:09:03 +01:00
Go::
2017-05-02 13:12:25 +02:00
* https://github.com/mdirkse/i3ipc-go
2017-09-29 23:02:18 +02:00
* https://github.com/i3/go-i3
2014-03-10 02:33:26 +01:00
JavaScript::
* https://github.com/acrisci/i3ipc-gjs
Lua::
2014-06-14 02:06:22 +02:00
* https://github.com/acrisci/i3ipc-lua
2014-03-10 02:33:26 +01:00
Perl::
* https://metacpan.org/module/AnyEvent::I3
Python::
* https://github.com/acrisci/i3ipc-python
* https://github.com/whitelynx/i3ipc (not maintained)
* https://github.com/ziberna/i3-py (not maintained)
Ruby::
2015-05-25 01:05:08 +02:00
* https://github.com/veelenga/i3ipc-ruby
* https://github.com/badboy/i3-ipc (not maintained)
2015-07-19 00:23:39 +02:00
Rust::
* https://github.com/tmerr/i3ipc-rs
2017-05-31 16:52:17 +02:00
OCaml::
2017-07-30 06:42:11 +02:00
* https://github.com/Armael/ocaml-i3ipc
2017-09-18 17:15:28 +02:00
== Appendix A: Detecting byte order in memory-safe languages
Some programming languages such as Go don’ t offer a way to serialize data in the
native byte order of the machine they’ re running on without resorting to tricks
involving the +unsafe+ package.
The following technique can be used (and will not be broken by changes to i3) to
detect the byte order i3 is using:
1. The byte order dependent fields of an IPC message are message type and
payload length.
* The message type +RUN_COMMAND+ (0) is the same in big and little endian, so
we can use it in either byte order to elicit a reply from i3.
* The payload length 65536 + 256 (+0x00 01 01 00+) is the same in big and
little endian, and also small enough to not worry about memory allocations
of that size. We must use payloads of length 65536 + 256 in every message
we send, so that i3 will be able to read the entire message regardless of
the byte order it uses.
2. Send a big endian encoded message of type +SUBSCRIBE+ (2) with payload `[]`
followed by 65536 + 256 - 2 +SPACE+ (ASCII 0x20) bytes.
* If i3 is running in big endian, this message is treated as a noop,
resulting in a +SUBSCRIBE+ reply with payload `{"success":true}`
footnote:[A small payload is important: that way, we circumvent dealing
with UNIX domain socket buffer sizes, whose size depends on the
implementation/operating system. Exhausting such a buffer results in an i3
deadlock unless you concurrently read and write, which — depending on the
programming language — makes the technique much more complicated.].
* If i3 is running in little endian, this message is read in its entirety due
to the byte order independent payload length, then
https://github.com/i3/i3/blob/d726d09d496577d1c337a4b97486f2c9fbc914f1/src/ipc.c#L1188[silently
discarded] due to the unknown message type.
3. Send a byte order independent message, i.e. type +RUN_COMMAND+ (0) with
payload +nop byte order detection. padding:+, padded to 65536 + 256 bytes
with +a+ (ASCII 0x61) bytes. i3 will reply to this message with a reply of
type +COMMAND+ (0).
* The human-readable prefix is in there to not confuse readers of the i3 log.
* This messages serves as a synchronization primitive so that we know whether
i3 discarded the +SUBSCRIBE+ message or didn’ t answer it yet.
4. Receive a message header from i3, decoding the message type as big endian.
* If the message’ s reply type is +COMMAND+ (0), i3 is running in little
endian (because the +SUBSCRIBE+ message was discarded). Decode the message
payload length as little endian, receive the message payload.
* If the message’ s reply type is anything else, i3 is running in big endian
(because our big endian encoded +SUBSCRIBE+ message was answered). Decode
the message payload length in big endian, receive the message
payload. Then, receive the pending +COMMAND+ message reply in big endian.
5. From here on out, send/receive all messages using the detected byte order.
2017-09-29 23:02:18 +02:00
Find an example implementation of this technique in
https://github.com/i3/go-i3/blob/master/byteorder.go